[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 05/09 20:46 / Filesize : 248 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

★東大入試作問者になったつもりのスレ★ 第三問



468 名前:132人目の素数さん mailto:sage [04/09/10 22:18:01]
>>456
4数をa,b,c,dとして仮定はb+c+d、a+c+d、a+b+d、a+b+cが素数。
でもしどれか一個が3だとする。a=3としてよい。すると
b≡c≡d (mod 3)であるか ≡1(mod3)、≡2(mod3)となるものがある。
前者ならb+c+dは3でない3の倍数なので矛盾。後者ならb≡1(mod3)、c≡2(mod3)
としてよいがa+b+cが3でない3の倍数になって矛盾。よって3はまじってない。
よってa≡±1(mod3)、b≡±1(mod3)、c≡±1(mod3)、d≡±1(mod3)だが
符号がおなじなのが3つあると仮にそれをa,b,cとするとa+b+cが3でない3の倍数になって矛盾。
よってa≡1(mod3)、b≡1(mod3)、c≡-1(mod3)、d≡-1(mod3)として一般性を失わない。
さて選んだ2数(x,y)の差が3の倍数なのだから(x,y)=(a,b) or (c,d)。
いずれにせよのこり2数を(z,w)とするとz≡w(mod 3)ゆえ主張は成立。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<248KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef