[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 05/09 22:04 / Filesize : 213 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数学総合スレッド Part2



327 名前:132人目の素数さん mailto:sage [03/07/20 21:43]
>>323
もういちどr_0,r_1,r_2,・・・のみたすべき条件を再確認します。
 
(Claim) Rの元の列1=r_0,r_1,r_2,・・・でv(b_i)≧i、F(1-r_1)(1-r_2)・・・(r_u)を
F(1-r_0)(1-r_1)・・・(1-r_u)=蚤'_k(Xn)^k、a'_k∈k[[X2・・・Xn]]と表示したとき
w(a'_k)≧δ-k (for k≦δ)、w(a'_k)=0、a'_k=0 (for δ+1≦k≦δ+u)
を満足するようにとれる。
 
ここでu=0の場合要求される条件は(for δ+1≦k≦δ+u)に相当するkが存在しないゆえ
事実上要求されるのはw(a'_k)≧δ-k (for k≦δ)、w(a'_k)=0だけでこの条件はもとの
a_kがすでにみたしているのでr_u=0ととれば十分です。
 
いささかしょぼい例ですがr_uを構成してゆく例をしめしてみます。
n=2としX1=X、X2=Y、F=XY^2+(1+X)Y^3+(X/(1-X))Y^4+・・・
のような例でやってみます。この場合v(F)=3でw(X^2)=2、w(1+X)=0ゆえ
前提条件をみたしてます。r_0はでよいことはすでに述べたとおり。
r_1はY^4の係数を消すためにr_1=X/((1-X)(1+X))ととります。
これはY^3の係数である1+Xがk[[X]]の可逆元なので可能です。
そしてFに(1-r_0)(1-r_1)をかけてみると
F(1-r_0)(1-r_1)
=XY^2+(1+X)Y^3+(X/(1-X))Y^4+・・・
-X^2/((1-X)(1+X))Y^3-X/(1-X)Y^4-X^2/((1-X)^2(1+X))Y^5+・・・
=XY^2-{(1+X)-X^2/((1-X)(1+X))}Y^3+(1+X)Y^3+0+・・・
となりY^4の係数を消すことができ、またY^3の係数も変化はしますがもともと
要求されていた条件をみたしている範囲内での変化にとどまっています。
もちろん(1-r_0)(1-r_1)・・・とかけていくとどんどん変化していきますが全体がCauchy列で
あるためyに関するべき展開の係数もやっぱりCauchy列になることがしめせるので
それは収束してその収束先でもa_δは可逆元、とくにa_δ(0・・・0)≠0であることが
示せます。
あってるような気がしてまふ。確認してよかったらつかってやってくさい。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<213KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef