[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 05/09 22:04 / Filesize : 213 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

代数学総合スレッド Part2



18 名前: ◆BhMath2chk mailto:sage [03/02/27 00:00]
>>12
X^(p^e)−aがK[X]で可約なら
b∈K,a=b^pとなるbが存在することの証明。
(1)1の原始p乗根がKにないとき。
Kの代数閉包の元c,dでa=c^(p^e),dは原始p^e乗根となるものをとる。
定数項を比較してc^(p^(e−1))d^u∈Kとなるuが存在することが分かる。
d^(pu)=(c^(p^(e−1))d^u)^p/a∈Kからd^(pu)=1。
よってb=c^(p^(e−1))d^uとすればいい。
(2)1の原始p乗根がKにあるとき。
eがより小さいとき成り立つとする。
X^(p^e)−aが二つのX^pの定数でない多項式の積で表せるなら
X^(p^(e−1))−aが可約になるので条件を満たすbが存在する。
そうでないとき1の原始p乗根の一つをdとし
f(X)を最高次の係数が1のX^(p^e)−aの既約約元とすると
Π_{0≦i<p}f((d^i)X)はX^pの定数でない多項式の積なので
X^(p^e)−a=Π_{0≦i<p}f((d^i)X)。







[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<213KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef