[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



972 名前:132人目の素数さん [03/12/31 01:54]
Harstshorne II Ex. 4.10

(b)
X をネータースキーム S 上固有かつ既約なスキームとする。
X の有限個のアフィン開被覆 U_i で各 U_i に対して
開埋入 U_i → P_i が存在する。ここに各 P_i は S 上射影的
なスキーム。

証明
f: X → S を構造射とする。
S はネーターだからアフィン開集合 S_i による有限被覆を持つ。
f は有限型だから、f^(-1)(S_i) はアフィン開集合 U_ij による
有限被覆を持つ。補題より、U_ij → S_i は準射影的である。
よって、補題より U_ij → S も準射影的である。
U_ij → S の閉像を P_ij とすれば U_ij → P_ij は
開埋入であり、P_ij は S 上射影的である。
添え字集合を適当に変えて U_ij, P_ij を それぞれ U_i, P_i
とすればよい。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef