補題 S をスキームとし、X と Y を S 上射影的なスキームとする。 X と Y の直和は S 上射影的である。
証明 定義より構造射 X → S は X → P^n x S → S と分解する。 ここに、X → P^n x S は閉埋入。 同様に構造射 Y → S は Y → P^m x S → S と分解する。 補題(>967)より、P^n x S と P^m x S の直和は P^(n+m+1) x S の閉部分スキームに同型である。 よって X と Y の直和は S 上射影的である。