[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



88 名前:132人目の素数さん [03/10/09 20:33]
命題3
Xを環付き空間とする。O_XのO_X加群としての自己同型群はΓ(X)の
可逆元全体のなす群Γ(X)^*と標準的に同型である。

証明は自明だろう。

Xを環付き空間とし、LをX上の可逆層とする。
定義によりXの開被覆{U_i}が存在し、各U_iで
LはO_Xと同型である。
この同型ψ_iを固定しておく。
i,jの任意の組に対してψ_jψ_i^(-1)は
Lの U_i ∩ U_j における同型を与える。
従って、命題3よりΓ(U_i ∩ U_j)^*の元が定まる。
これをθ(i,j)と書く。
i,j,kに対して、θ(j,k)θ(i,j) = θ(i,k) がU_i ∩ U_j ∩ U_k
で成り立つ。θ(i,i)はΓ(U_i) における単位元である。

命題4
逆に上の関係式を満たすθ(i,j)があると、X上の可逆層L
が定り、θ(i,j)は上記のように求めたものと一致する。

命題2から明らかだろう。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef