Ex.3.18. 構成可能集合(constractible set). X をザリスキ位相空間とする. X の構成可能部分集合(constractible subset)とは, 以下をみたす最小の、部分集合の族 F に属する部分集合のことである: (1) 各開集合は F の元, (2) F の元の有限個の共通部分は F の元, (3) F の元の補集合は F の元.
(a) X の部分集合が局所的に閉であるとは, それがある開集合と ある閉集合との共通部分になっていることである. X の部分集合が構成可能であることの必要十分条件は それが局所的に閉な部分集合の有限個の非交和と書けることであることを示せ.
(b) 既約なザリスキ空間 X の構成可能部分集合が稠密であることの必要十分条件が それが生成点を含むことであることを示せ. さらに, そのときそれは空でない開集合を含む.
(c) X の部分集合 S が閉であることの必要十分条件は それが構成可能かつ特殊化で安定であることである. 同様に, X の部分集合 T が開であることの必要十分条件は それが構成可能かつ一般化で安定であることである.
(d) f: X -> Y がザリスキ空間の連続写像ならば, Y の構成可能部分集合の逆像は X の構成可能部分集合である.