[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



672 名前:132人目の素数さん [03/11/08 11:26]
Hartshorne II Ex. 3.11 (閉部分スキーム)の解答

(b)
Y の台位相空間は X = Spec(A) の閉集合と位相同型だから、
Y の台位相空間を X の閉集合と見なしてよい。
y ∈ Y を含む Y のアフィン開集合 V をとる。
Y は X の部分位相空間だから、V = U ∩ Y となる X の開集合 U
がある。y ∈ D(g) ⊆ U となる X のアフィン開集合 D(g) をとる。
V_g' = D(g) ∩ Y となる。
ここで、g' は、f: Y → X に付随する A → Γ(Y) と
制限写像 Γ(Y) → Γ(V) の合成写像による g の像であり、
V_g' = Spec(Γ(V)[1/g']) である。
さて、各点 x ∈ X に対して x ∈ D(f_i) となる X の
アフィン開集合を以下のようにとる。
まず、x ∈ X - Y のときは、x ∈ D(f_i) となる任意の
D(f_i) をとる。x ∈ Y のときは x ∈ D(f_i) で
D(f_i) ∩ Y が Y のアフィン開集合となるもの。
この D(f_i) の存在は上で証明されている。
Y は準コンパクトだから、D(f_i) ∩ Y が空でないものは
有限個に出来る。さらに X も準コンパクトだから
D(f_i) 全体も有限個に出来る。
これから Ex. 2.17b より Y はアフィンである。
Ex. 2.18d より、A のあるイデアル I があって
Y = Spec(A/I) となり Y → X は 自然な Spec(A/I)→ Spec(A)
と見なせる。
証明終






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef