[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2chのread.cgiへ]
Update time : 04/03 02:07 / Filesize : 359 KB / Number-of Response : 1002
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

大好き★代数幾何



197 名前:186 [03/10/18 00:28]
>>193
またまたチャレンジ! なんかクセになってきた。
本見ずに考えたら半日くらいかかってしまったが・・・。
>>196 のヒントのやりかたとはちょっと違うかも。

II.1.16(b) の証明:
左完全性は常に成り立つから、F(U) → F'(U) が全射であることを示せばよい。
以下、F' を F の部分層とみなす。
s ∈ F''(U)をとる。F → F'' が層の全射であることから、
∃ U の開被覆 {U_i}、t_i ∈ F(U_i) t_i → s|U_i。
添字の集合I に適当な整列順序を入れ、i, j (i < j) に対して
c_ij := t_j - t_i ∈ F(U_i∩U_j) とおく。
c_ij ∈ Ker(F(U_i∩U_j) → F''(U_i∩U_j)) = F'(U_i∩U_j) であること、
および c_ij が「チェインルール」 c_jk - c_ik + c_ij = 0 を満たすこと
が容易にわかる。
今、{c_i} ∈ ΠF'(U_i) を次のように(超限)帰納的に定義する。
・「最初の元」0の値:
 c_0 := 任意の元 ∈ F'(U_0)。
・ i の「1つ後の元」i'(= min{j | i <j})の値:
 c_i + c_ii' ∈ F'(U_i∩U_i') の定義集合を U_i' に拡大したものを
c_i' ∈ F'(U_i')とする。F' が軟弱であることからこのような c_i' が
常にとれる。
この {c_i} が、∀ i, j (i < j) c_j - c_i = c_ij ∈ F'(U_i∩U_j) を満たすことが容易に
わかる(チェインルールを使う)。
この {c_i} を使って、{r_i}∈ΠF(U_i) を r_i := t_i - c_iで定義すると、U_i∩U_j 上で、
r_i = t_i - c_i = t_i - c_j + c_ij = t_i - c_j + t_j - t_i = r_j。
よって、この {r_i} はグローバルに r ∈ F(U) に貼り合わせることができ、これが求める
s の逆像となる。

以上。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<359KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef