- 75 名前:現代数学の系譜 雑談 [2025/04/21(月) 23:36:35.24 ID:/KK7NCj8.net]
- まず、タイポ訂正
>>19 整列可能定理の示すところ 集合(A,B,C・・Z) から 元を取り出して ↓ 整列可能定理の示すところ 集合{A,B,C・・Z} から 元を取り出して だな さて >ある集合から元を取り出して {},{{}},{{{}}},{{{{}}}},・・・ という整列を得ることは可能(by 整列可能定理) >この場合、よく見ると {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ となっているから、そう書くことは禁止されない(by 整列可能定理) 後の行を丁寧に書くと {}∈{{}}∈{{{}}}∈{{{{}}}}∈・・・ ↓ {}∈{{}},{{}}∈{{{}}},{{{}}}∈{{{{}}}},{{{{}}}}∈{{{{{}}}}},・・・ と バカ丁寧に書ける が、まあ最初の記法で 分かるはず(面倒だから略記したのと、ある程度の数学のMMレベルなら分かるだろうねと(MM については 下記の謎の数学者氏動画ご参照。特にπ=3 or 3.14 論争 が 重箱の隅)) MMの低いヤクザが、必死でインネンつけるの図だなw ;p) あと、モストフスキ崩壊補題 は 近藤友祐 https://elecello.com/doc/set/set0005.pdf (>>24)にあるが P4 『系 9. 任意の整列集合に対し,それと順序同型な順序数が一意に存在する.したがって整列集合(M,<)の順序型type(M,<)を,“(M,<)と順序同型な唯一の順序数”として定めることができる.』 P3 『系 7(集合版モストフスキ崩壊補題). 二項関係が集合上整礎かつ外延的であると仮定する.このとき,(A,R)≅(M,∈)を満たす推移的集合がただ一つ存在する.』 など (要するに、逆に言えば 系 9を一般化した定理が モストフスキ崩壊補題ってわけですね) なので、下記の 自然数 で suc (a):=a ∪ {a} とするノイマンの構成では、∈による推移関係が成り立つ 一方、suc(a) := {a} と定義する上記の ツェルメロの構成では ∈による推移関係は 不成立だが しかし、モストフスキ崩壊補題の系 7 により、ツェルメロの構成は ∈による推移的なM(推移的なノイマンの構成
|

|