[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 08/15 03:52 / Filesize : 566 KB / Number-of Response : 1067
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ13



811 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [2025/02/12(水) 10:44:42.29 ID:rAcOLHcf.net]
>>735 補足

・1列の出題の考察から分かること
 i)全事象 Ω=多項式環R(x) で、Ωが発散している。つまり、大きすぎる。
  だからP(Ω)=1のコルモゴロフの確率公理を満たせない
 ii)Ωが発散して 大きすぎるので、大数の法則が成り立たない
・だから、箱入り無数目のロジックに穴がないとしても
 99/100 が、未開の1列と 開けてしまった99列が平等だと仮定して導けたとしても
 本来の確率論の外、つまり 99/100 は、疑似確率 あるいは 確率モドキ なのです

<補足>
i)全事象 Ωが、大きすぎ Ωが発散しているとき何が起きるか?
 簡単なミニモデルとして、Ω=N(自然数)から、数を1つ選んで 大きい数の人が勝ちとする
 場に、0,1,2,・・の無限の札が、裏向けに伏せておいた置いてある
 Aさんが、ある数a=100億 を選んで、Bさんに示したとする
 Bさんは、勝ったと思う。Nは無限集合で、平均値も無限大だから、100億超えの数は簡単に選べるはず
 逆も真で、Bさんが先にb=100億 を提示すれば、Aさんが勝つだろう
 では、AさんとBさんと、同時に札を開示すればどうか? 確率1/2?
ii)もし、札が有限で 0,1,2,・・,100 までとしよう
 そして、何度も繰り返す。そのとき、大数の法則で
 どちらが先に開示するか、あるいは同時開示か 大数の法則で 確率1/2に収束するはず
 だが、Ω=N(自然数)で 0,1,2,・・の無限の札 を使うと
 大数の法則とは合わない。大数の法則が成り立たない

Ω=多項式環R(x) の場合も、上記同様です
繰り返すが、P(Ω)=1のコルモゴロフの確率公理を満たせない
大数の法則が成り立たない
つまり 99/100 は、疑似確率 あるいは 確率モドキ です!






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<566KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef