[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 08/15 03:52 / Filesize : 566 KB / Number-of Response : 1067
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ13



642 名前:現代数学の系譜 雑談 ◆yH25M02vWFhP [2025/02/10(月) 20:15:26.43 ID:fq1QO0q/.net]
つづき

これまで未解決の問題は、e と π という数が代数的に独立であるかどうかという問題です。これは、リンデマン・ワイエルシュトラスの定理の現在証明されていない一般化であるシャヌエルの予想によって解決されるだろう。[41][42]

eは正規分布していると考えられており、これはeを任意の基数で表した場合、その基数で可能な数字が均一に分布している(与えられた長さの任意のシーケンスで等しい確率で発生する)ことを意味する。[43]

代数幾何学において、周期とは代数領域上の代数関数の積分として表現できる数です。定数πは周期であるが、eは周期ではないと推測される。[44]

en.wikipedia.org/wiki/Proof_that_e_is_irrational
Proof that e is irrational
The number e was introduced by Jacob Bernoulli in 1683. More than half a century later, Euler, who had been a student of Jacob's younger brother Johann, proved that e is irrational; that is, that it cannot be expressed as the quotient of two integers.
Euler's proof
Euler wrote the first proof of the fact that e is irrational in 1737 (but the text was only published seven years later).[1][2][3] He computed the representation of e as a simple continued fraction, which is
e=[2;1,2,1,1,4,1,1,6,1,1,8,1,1,・・・ ,2n,1,1,・・・ ].
Since this continued fraction is infinite and every rational number has a terminating continued fraction, e is irrational. A short proof of the previous equality is known.[4][5] Since the simple continued fraction of e is not periodic, this also proves that e is not a root of a quadratic polynomial with rational coefficients; in particular, e2 is irrational.

Fourier's proof
略す

Alternate proofs
略す

Generalizations
略す
(引用終り)
以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<566KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef