>>551-553 おっちゃん、ご苦労さまです 下記 e (mathematical constant) 、皆さんの参考に貼ります ;p)
(参考) ja.wikipedia.org/wiki/%E3%83%8D%E3%82%A4%E3%83%94%E3%82%A2%E6%95%B0 ネイピア数(ネイピアすう、英: Napier's constant)は、数学定数の一つであり、自然対数の底である。ネーピア数、ネピア数とも表記する。記号として通常は e が用いられる。
en.wikipedia.org/wiki/E_(mathematical_constant) e (mathematical constant) Properties Number theory The real number e is irrational. Euler proved this by showing that its simple continued fraction expansion does not terminate.[38] (See also Fourier's proof that e is irrational.)
Furthermore, by the Lindemann–Weierstrass theorem, e is transcendental, meaning that it is not a solution of any non-zero polynomial equation with rational coefficients. It was the first number to be proved transcendental without having been specifically constructed for this purpose (compare with Liouville number); the proof was given by Charles Hermite in 1873.[39] The number e is one of only a few transcendental numbers for which the exact irrationality exponent is known (given by μ(e)=2.[40]
An unsolved problem thus far is the question of whether or not the numbers e and π are algebraically independent. This would be resolved by Schanuel's conjecture – a currently unproven generalization of the Lindemann–Weierstrass theorem.[41][42]
It is conjectured that e is normal, meaning that when e is expressed in any base the possible digits in that base are uniformly distributed (occur with equal probability in any sequence of given length).[43]
In algebraic geometry, a period is a number that can be expressed as an integral of an algebraic function over an algebraic domain. The constant π is a period, but it is conjectured that e is not.[44]
(google訳) 実数 e は無理数です。オイラーは、単純な連分数展開が終了しないことを示してこれを証明した。[38] (e が無理数であるというフーリエの証明も参照してください。)