[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/12 00:15 / Filesize : 793 KB / Number-of Response : 1113
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文と乗数イデアル他関連資料スレ11



477 名前:132人目の素数さん [2024/09/22(日) 14:52:09.55 ID:oAEXID8O.net]
>>414
>そういう怠惰な学生の中には
>Weierstrass流の円周率の定義を聞いて
>目を覚ます者たちもいるだろう

ご苦労さまです
en.wikipedia に詳しい解説がありますね
(やはり、数学の情報は、英語が圧倒的に豊富ですね)

(参考)
https://en.wikipedia.org/wiki/Pi
The number π (/paɪ/; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159.

Definition
π is commonly defined as the ratio of a circle's circumference C to its diameter d:[10]
π=C/d
The ratio C/d is constant, regardless of the circle's size. For example, if a circle has twice the diameter of another circle, it will also have twice the circumference, preserving the ratio C/d.
This definition of π implicitly makes use of flat (Euclidean) geometry; although the notion of a circle can be extended to any curve (non-Euclidean) geometry, these new circles will no longer satisfy the formula
π=C/d.[10]

Here, the circumference of a circle is the arc length around the perimeter of the circle, a quantity which can be formally defined independently of geometry using limits—a concept in calculus.[11] For example, one may directly compute the arc length of the top half of the unit circle, given in Cartesian coordinates by the equation x^2+y^2=1, as the integral:[12]
π=∫−1〜1 dx/√(1−x^2).
An integral such as this was proposed as a definition of π by Karl Weierstrass, who defined it directly as an integral in 1841.[b]

Integration is no longer commonly used in a first analytical definition because, as Remmert 2012 explains, differential calculus typically precedes integral calculus in the university curriculum, so it is desirable to have a definition of π that does not rely on the latter. One such definition, due to Richard Baltzer[14] and popularized by Edmund Landau,[15] is the following: π is twice the smallest positive number at which the cosine function equals 0.[10][12][16] π is also the smallest positive number at which the sine function equals zero, and the difference between consecutive zeroes of the sine function. The cosine and sine can be defined independently of geometry as a power series,[17] or as the solution of a differential equation.[16]
In a similar spirit, π can be defined using properties of the complex exponential, exp z, of a complex variable z. Like the cosine, the complex exponential can be defined in one of several ways.

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<793KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef