- 92 名前:イナ ◆/7jUdUKiSM mailto:sage [2024/04/11(木) 06:09:55.83 ID:f6sF8BmQ.net]
- 前>>84
>>85 底角2α(∠A=∠B)の直角二等辺三角形(高さh)を描いてみた。 内接円の中心と頂点Aの距離は4/sinα 直角三角形の相似より4cosα/sinα:4=BC:h-4 ピタゴラスの定理より(4cosα/sinα)^2+h^2=BC^2 sin(α-θ)=sinαcosθ-cosαsinθ =4(1-2sin^2α)/{8-8sin^2α-4(1-2sin^2α)} =4(1-2sin^2α)/4 =1-2sin^2α ちょっとここまでしかわからない。 直角二等辺三角形の頂角をAにするとθ=0になって意味わからない。 sin(α-θ)=cosθだとしたら、 cosθ=2cos^2α-1=1-2sin^2α かもしれない。勘で。
|

|