- 959 名前:132人目の素数さん mailto:sage [2024/04/03(水) 14:57:43.39 ID:TjcbA1Fk.net]
- 検証
α2ω=\(α){ x=Re(α) y=Im(α) ω1=x*((-x*(x/(x^2+y^2))-y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2)/(x^2-2*x*(x/(x^2+y^2))+y^2-2*y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2))+ x/(x^2+y^2)*(1- ((-x*(x/(x^2+y^2))-y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2)/(x^2-2*x*(x/(x^2+y^2))+y^2-2*y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2))) ω2=y*((-x*(x/(x^2+y^2))-y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2)/(x^2-2*x*(x/(x^2+y^2))+y^2-2*y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2))+ (-y/(x^2+y^2))*(1- ((-x*(x/(x^2+y^2))-y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2)/(x^2-2*x*(x/(x^2+y^2))+y^2-2*y*(-y/(x^2+y^2))+(x/(x^2+y^2))^2+(-y/(x^2+y^2))^2))) ω1 + 1i*ω2 } A2H=\(a,b) -(2*a)*(2*b)/( 2*(a^2+b^2)*((a-b*1i)-1)/(a-b*1i) ) > α2ω(1+2i) [1] 0.3-0.1i > α2ω(-1+1i) [1] -0.6-0.2i > α2ω(1+1i) [1] 0.6-0.2i > A2H(1,2) [1] -0.8-0.4i > A2H(-1,1) [1] 0.6+0.2i > A2H(1,1) [1] -1-1i
|

|