[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 06/04 08:38 / Filesize : 355 KB / Number-of Response : 1041
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

高校数学の質問スレ Part433



673 名前:132人目の素数さん [2024/03/24(日) 01:34:44.43 ID:JQZhW1Hp.net]
>>649
 √(sin(x)) = s とおくと
 dx = {2s/cos(x)} ds = {2s/√(1-s^4)} ds

 (与式) = ∫ sin(x)/{1+√(sin(x))} dx = ∫ {2s^3 /[(1+s)√(1-s^4)]}ds
ここで
 2s^3 /(1+s) = 3(1+ss) −2s −2 − {ss + (1-s)/(1+s)},
だから
 (与式) = 3∫(1+ss)/√(1-s^4) ds −∫2s/√(1-s^4) ds −∫2/√(1-s^4) ds −∫{ss + (1-s)/(1+s)}/√(1-s^4) ds
    = 3∫√(1+ss)/√(1-ss) ds −∫1/√(1-tt) dt −∫2/√(1-s^4) ds −∫{ss + (1-s)/(1+s)}/√(1-s^4) ds
 (与式) = 3E(-1) −π/2 −2K(-1) −1
    = 0.5374428024545516

ここで次を使った。
 ∫[0,1] (1+ss)/√(1-s^4) ds = ∫[0,1] √(1+ss)/√(1-ss) ds = E(-1) = 1.9100988945
 ∫[0,1] 2s/√(1-s^4) ds = ∫[0,1] 1/√(1-tt) dt = π/2 = 1.570796327
 ∫[0,1] 1/√(1-s^4) ds = K(-1) = (√π)






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<355KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef