[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 23:11 / Filesize : 800 KB / Number-of Response : 1116
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学・数学隣接分野(含むガロア理論)12



845 名前:現代数学の系譜 雑談 [2023/01/14(土) 23:21:41.66 ID:p/slNf5Z.net]
>>749
つづき

https://en.wikipedia.org/wiki/Primitive_root_modulo_n
Primitive root modulo n
Definition
If n is a positive integer, the integers from 0 to n - 1 that are coprime to n (or equivalently, the congruence classes coprime to n) form a group, with multiplication modulo n as the operation; it is denoted by Z^×n, and is called the group of units modulo n, or the group of primitive classes modulo n.
As explained in the article multiplicative group of integers modulo n,
this multiplicative group (Z^×n) is cyclic if and only if n is equal to 2, 4, p^k, or 2p^k where p^k is a power of an odd prime number.[2][3][4]

When (and only when) this group Z^×n is cyclic, a generator of this cyclic group is called a primitive root modulo n[5] (or in fuller language primitive root of unity modulo n, emphasizing its role as a fundamental solution of the roots of unity polynomial equations X^m - 1 in the ring Zn), or simply a primitive element of Z^×n.
When Z^×n is non-cyclic, such primitive elements mod n do not exist. Instead, each prime component of n has its own sub-primitive roots (see 15 in the examples below).
(引用終り)
以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<800KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef