[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 23:11 / Filesize : 800 KB / Number-of Response : 1116
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学・数学隣接分野(含むガロア理論)12



55 名前:132人目の素数さん [2022/12/24(土) 21:38:40.34 ID:/P8Bw71J.net]
そもそも巾根解法なるものは、その前提として
数に対してその巾根が存在するということを自明であるとして話を進めているが、
そのことは、純粋に代数の範囲だけでは収まらないものであろう。
実数あるいはそれを実部と虚部とする複素数としての、極限を伴う演算でのみ
巾根は求まるものだからだ。有理数体Qの元である2に対してその平方根
である√2が最初からあると思うのは間違いで、有理数の極限として生み出された
ものが√2だからだ。純代数的にやるのなら、Qには含まれない元θが代数的
関係θ^2=2を満たすものとしてそれをQに添加したものが体を成している
ことを了解して、そのθが2の平方根であるとしなければならない。つまり
体の代数拡大を考えていることになる。
でもそのような考え方で巾根をとらえるのなら、一般の代数方程式の解法で
巾根解法を考えなければならない必然性は無くなる。元の体K上で既約な
多項式P(x)があるときに、方程式P(x)=0の根を求めるのには、
Kには存在しない元θがK上の代数関係P(θ)=0を満たすものであるとしてやれば、
方程式P(x)=0の解の1つがθになるからだ。そうしてKにθを添加すると
体 K(θ)が得られることも同様だ。
そうして元の体Kを変えないK(θ)上の自己同形全体の為す群がガロア群である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<800KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef