[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 21:54 / Filesize : 458 KB / Number-of Response : 1035
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

高校数学の質問スレ Part421



906 名前:132人目の素数さん mailto:sage [2022/09/27(火) 09:22:17.31 ID:CMRjnN5K.net]
レスしてやれよ!w

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<458KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef