- 795 名前:132人目の素数さん mailto:sage [2022/09/25(日) 18:10:41.91 ID:1UsSuqxr.net]
- >>720
任意の2個の整数が互いに素ならば(a, bc)=1になるから φ(abc)=φ(a)φ(bc)=φ(a)φ(b)φ(c)となる。何個あっても同じである。 これを用いると φ(n)=φ(p^α)φ(q^β)… =p^α(1-1/p)q^β(1-1/q)… =n(1-1/p)(1-1/q)…となり証明された。 (r+nt, n)=(r, n) nを法としての既約類の数がφ(n) すなわち既約剰余系の数がφ(n) ay+bx=k、(a, B)=1 ay+bbx=abより φ(a)φ(b)=φ(ab)となる。 例えば3y+5x=15のすると (3, 5)=1、φ(3)=2、φ(5)=4 φ(15)=8。 1 2 1 2 3 4 1 2 4 7 8 11 13 14 1 7 13 4 11 2 8 14
|

|