- 648 名前:132人目の素数さん [2022/09/23(金) 18:03:48.67 ID:N15NgvLO.net]
- >>494
領域Dの面積は∫[x=-1→2](x+2-x^2)dx=[-x^3/3+x^2/2+2x](x=-1→2) =-8/3+2+4-1/3-1/2+2 =9/2 放物線y=x^2とy=1で囲まれる領域の面積は2×(2/3)=4/3 4/3+V=9/4とすると V=(27-16)/12=11/12 端点が(-1/12,23/12),(1,1)のとき面積はともに9/4 分割線の長さはピタゴラスの定理より、 √{(13/12)^2+(11/12)^2}=√290/12 もう少し短くできる可能性がある。
|

|