- 490 名前:132人目の素数さん [[ここ壊れてます] .net]
- >>411
2π∫[t=-1/2→0]√(9+12t-12t^2)dt+π∫[t=0→1/2]{3+2t-2t^2+√(9+12t-12t^2)}dt =2π∫[t=-1/2→0]∫(9+12t-12t^2)^(1/2)dt+π∫[t=0→1/2]{3+2t-2t^2+(9+12t-12t^2)^(1/2)}dt =2π[t=-1/2→0][(9+12t-12t^2)^(3/2)/(12-24t)(3/2)]+π∫[t=0→1/2][3t+t^2-2t^3/3+(9+12t-12t^2)^(3/2)/(12-24t)(3/2)] =2π[t=-1/2→0][(9+12t-12t^2)^(3/2)/(18-36t)]+π∫[t=0→1/2][3t+t^2-2t^3/3+(9+12t-12t^2)^(3/2)/(18-36t)] =2π(27/18)+π(3/2+1/4-1/12-27/18) =3π+(5/3-3/2)π =19π/6 もう少し大きくなると思う。 2次式の平方根を積分するルールを教えてください。 それさえわかれば解ける。
|

|