- 883 名前:132人目の素数さん [2022/10/17(月) 07:28:46.65 ID:qQwmejim.net]
- まず
>>804 訂正 そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可算は出ない>>725 ↓ そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可測は出ない>>725 さて >>804 補足 >時枝記事では、完全代表系は、必ずしも必要ない >例えば、100個の代表が必要なら、最小限100個の代表ですむ >当然ですが、有限の代表で済ますなら、有限選択公理で済む >可算の代表で済ますならば、可算選択公理で済む >そして、この場合 可算選択公理で済むならば、ヴィタリ集合的な非可測は出ない>>725 >ただし、全事象が発散するという非正則分布>>51には、なる だから、時枝氏の記事>>1の 「選択公理→非可測集合」という論が可笑しいよね ”ZFCでは、実数R中に、ヴィタリ集合的な非可測が出るから ZFC中の測度論は、非可測を使っている”みたいな時枝氏の論は ちょっとね。 非可測集合の存在と ZFC中での 非可測集合を排除した測度論の存在とは 両立するよね 時枝も同じ>>1 最小限100個の代表ですむんだったら 「ヴィタリ集合的な非可測は、関係ない」よね (実数R+ZFCだから、即ヴィタリ集合で、”お手つき”みたいな意味不明な議論はやめてほしいよ)
|

|