[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 12:40 / Filesize : 750 KB / Number-of Response : 1098
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

スレタイ 箱入り無数目を語る部屋3



1 名前:132人目の素数さん [2022/08/13(土) 16:51:12.04 ID:d42KNd2H.net]
前スレが1000近くなったので、新スレを立てる

前スレ 箱入り無数目を語る部屋2
https://rio2016.5ch.net/test/read.cgi/math/1629325917/

(参考)
時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋
純粋・応用数学(含むガロア理論)8
https://rio2016.5ch.net/test/read.cgi/math/1620904362/401
時枝問題(数学セミナー201511月号の記事)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」

https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice
Probabilities in a riddle involving axiom of choice
asked Dec 9 '13 at 16:16 Denis
(Denis質問)
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
(Pruss氏)
The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate.
(Huynh氏)
If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist.

つづく

791 名前:132人目の素数さん mailto:sage [2022/10/11(火) 19:01:27.72 ID:DT3AcY1E.net]
>>705 >いくらでも しっぽを小さくできて、しっぽを無限小にできるということ
>>707 >「無限小」の定義がないが
>>712 >形式的べき級数 は、最低次の項が高いほど、0 に近いと考えて扱います。
>>713
>上記で定義した位相から、二つの式 F1,F2 の距離を以下の式で定める
>|F1-F2|=1/(k+1)
>(注:k+1としたのは、定数項(0次)を扱うため)
>つまり、上記の位相で、F1-F2が k次未満部分が一致して、
>はじめてk次で0で無い項がでるとき
>二つの式の距離を、1/(k+1)とする

なるほど

792 名前:132人目の素数さん mailto:sage [2022/10/11(火) 19:02:54.42 ID:DT3AcY1E.net]
>>713
>原点に極を持たない超越関数τのx=0での冪級数展開に対し
>τに収束する多項式のコーシー列が定義できる
>|τ-fn(x)|=1/(n+1) とできる
>(fn(x)は、τのx=0での冪級数展開で、第n-1項までを取った多項式で、
> τ-fn(x)は第n項から初めて0で無い項が出るとする)

ここまではいいよ
問題はこの後

>この距離の定義で、τ-fn(x)のしっぽの長さを1/(n+1) とできる

はい、ダメ、全然ダメ
距離=しっぽの長さ、ではありません
距離が0でない限り、しっぽの長さは全部無限です

>この場合、しっぽの長さは有限だが、
>多項式環の中で、0に収束するコーシー列が定義できる

しっぽの長さは有限、が嘘
距離が0でない限り、しっぽの長さは全部無限です

793 名前:132人目の素数さん mailto:sage [2022/10/11(火) 19:04:08.50 ID:DT3AcY1E.net]
>>714
>大して努力は、していない

だから誤りにいつまでも気づけない

>形式的冪級数の空間 K[[x]] と
>数列空間K^N は同じ線形空間と見なせる事が分かる

そして、多項式の空間 K[x} と
数列空間∪K^n (n∈N) も同じ線形空間と見なせる事が分かる

で、尻尾の同値類の代表元全体の空間はK^N/∪K^n (n∈N)であることもわかる。
つまりK^Nを∪K^n (n∈N)ファイバー空間としたときの切断。

∪K^n (n∈N)全体を1とするような測度が入れられるかといえば無理

なぜなら
K^0+K^1+K^2+…=1
として、
K^0,K^1,K^2,…が、全部0なら、可算加法性から総和も0
K^0,K^1,K^2,…が、あるK^n で0より大きく、
かつ、任意のnで、K^n<K^(n+1)なら、
アルキメデスの性質と可算加法性から総和が∞

したがって、決定番号がnの集合は、nが何であれ非可測

794 名前:132人目の素数さん [2022/10/11(火) 21:31:16.56 ID:hfWoJpaE.net]
>>721
>しっぽの長さは有限、が嘘
>距離が0でない限り、しっぽの長さは全部無限です

意味わかんないけど
距離、長さ
両方とも、計量の入れ方に依存すると思うよ


”距離が0でない限り、しっぽの長さは全部無限です”?
意味わかんないw

795 名前:132人目の素数さん [2022/10/11(火) 21:31:45.64 ID:hfWoJpaE.net]
>>723
>アルキメデスの性質と可算加法性から総和が∞
>したがって、決定番号がnの集合は、nが何であれ非可測

その”したがって”は、
おかしくないか?
「総和が∞」は、可測のうちだよ

下記ヴィタリ集合は、下記
”一つの定数の無限和は 0 であるか無限大に発散するので、いずれにせよ [1, 3] の中には入らない。すなわち V は可測ではない。つまりルベーグ測度 λ はいかなる値も λ(V) の値として定義できない[3][4]。”
であって、無限大も含めて、”いかなる値も”だよ

無限大は、可測だよ

(参考)
https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88
ヴィタリ集合
ルベーグ非可測な実数集合の基本的な例である[1]。

構成と証明
一つの定数の無限和は 0 であるか無限大に発散するので、いずれにせよ [1, 3] の中には入らない。すなわち V は可測ではない。つまりルベーグ測度 λ はいかなる値も λ(V) の値として定義できない[3][4]。

796 名前:132人目の素数さん mailto:sage [2022/10/12(水) 00:35:52.53 ID:TRiiI02m.net]
>>718
この定義、よく見たら時枝記事の同値関係とは別物になってるな
(スレ主のおかしさを指摘する分には問題ないが)。

抜きしちゃイカンな。以下で正しく清書する。






[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<750KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef