1 名前:132人目の素数さん [2022/08/13(土) 16:51:12.04 ID:d42KNd2H.net] 前スレが1000近くなったので、新スレを立てる 前スレ 箱入り無数目を語る部屋2 https://rio2016.5ch.net/test/read.cgi/math/1629325917/ (参考) 時枝問題(数学セミナー201511月号の記事) 「箱入り無数目」抜粋 純粋・応用数学(含むガロア理論)8 https://rio2016.5ch.net/test/read.cgi/math/1620904362/401 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis (Denis質問) I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N?1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up. (Pruss氏) The probabilistic reasoning depends on a conglomerability assumption, ・・・and we have no reason to think that the conglomerability assumption is appropriate. (Huynh氏) If it were somehow possible to put a 'uniform' measure on the space of all outcomes, then indeed one could guess correctly with arbitrarily high precision, but such a measure doesn't exist. つづく
791 名前:132人目の素数さん mailto:sage [2022/10/11(火) 19:01:27.72 ID:DT3AcY1E.net] >>705 >いくらでも しっぽを小さくできて、しっぽを無限小にできるということ >>707 >「無限小」の定義がないが >>712 >形式的べき級数 は、最低次の項が高いほど、0 に近いと考えて扱います。 >>713 >上記で定義した位相から、二つの式 F1,F2 の距離を以下の式で定める >|F1-F2|=1/(k+1) >(注:k+1としたのは、定数項(0次)を扱うため) >つまり、上記の位相で、F1-F2が k次未満部分が一致して、 >はじめてk次で0で無い項がでるとき >二つの式の距離を、1/(k+1)とする なるほど
792 名前:132人目の素数さん mailto:sage [2022/10/11(火) 19:02:54.42 ID:DT3AcY1E.net] >>713 >原点に極を持たない超越関数τのx=0での冪級数展開に対し >τに収束する多項式のコーシー列が定義できる >|τ-fn(x)|=1/(n+1) とできる >(fn(x)は、τのx=0での冪級数展開で、第n-1項までを取った多項式で、 > τ-fn(x)は第n項から初めて0で無い項が出るとする) ここまではいいよ 問題はこの後 >この距離の定義で、τ-fn(x)のしっぽの長さを1/(n+1) とできる はい、ダメ、全然ダメ 距離=しっぽの長さ、ではありません 距離が0でない限り、しっぽの長さは全部無限です >この場合、しっぽの長さは有限だが、 >多項式環の中で、0に収束するコーシー列が定義できる しっぽの長さは有限、が嘘 距離が0でない限り、しっぽの長さは全部無限です
793 名前:132人目の素数さん mailto:sage [2022/10/11(火) 19:04:08.50 ID:DT3AcY1E.net] >>714 >大して努力は、していない だから誤りにいつまでも気づけない >形式的冪級数の空間 K[[x]] と >数列空間K^N は同じ線形空間と見なせる事が分かる そして、多項式の空間 K[x} と 数列空間∪K^n (n∈N) も同じ線形空間と見なせる事が分かる で、尻尾の同値類の代表元全体の空間はK^N/∪K^n (n∈N)であることもわかる。 つまりK^Nを∪K^n (n∈N)ファイバー空間としたときの切断。 ∪K^n (n∈N)全体を1とするような測度が入れられるかといえば無理 なぜなら K^0+K^1+K^2+…=1 として、 K^0,K^1,K^2,…が、全部0なら、可算加法性から総和も0 K^0,K^1,K^2,…が、あるK^n で0より大きく、 かつ、任意のnで、K^n<K^(n+1)なら、 アルキメデスの性質と可算加法性から総和が∞ したがって、決定番号がnの集合は、nが何であれ非可測
794 名前:132人目の素数さん [2022/10/11(火) 21:31:16.56 ID:hfWoJpaE.net] >>721 >しっぽの長さは有限、が嘘 >距離が0でない限り、しっぽの長さは全部無限です 意味わかんないけど 距離、長さ 両方とも、計量の入れ方に依存すると思うよ で ”距離が0でない限り、しっぽの長さは全部無限です”? 意味わかんないw
795 名前:132人目の素数さん [2022/10/11(火) 21:31:45.64 ID:hfWoJpaE.net] >>723 >アルキメデスの性質と可算加法性から総和が∞ >したがって、決定番号がnの集合は、nが何であれ非可測 その”したがって”は、 おかしくないか? 「総和が∞」は、可測のうちだよ 下記ヴィタリ集合は、下記 ”一つの定数の無限和は 0 であるか無限大に発散するので、いずれにせよ [1, 3] の中には入らない。すなわち V は可測ではない。つまりルベーグ測度 λ はいかなる値も λ(V) の値として定義できない[3][4]。” であって、無限大も含めて、”いかなる値も”だよ 無限大は、可測だよ (参考) https://ja.wikipedia.org/wiki/%E3%83%B4%E3%82%A3%E3%82%BF%E3%83%AA%E9%9B%86%E5%90%88 ヴィタリ集合 ルベーグ非可測な実数集合の基本的な例である[1]。 構成と証明 一つの定数の無限和は 0 であるか無限大に発散するので、いずれにせよ [1, 3] の中には入らない。すなわち V は可測ではない。つまりルベーグ測度 λ はいかなる値も λ(V) の値として定義できない[3][4]。
796 名前:132人目の素数さん mailto:sage [2022/10/12(水) 00:35:52.53 ID:TRiiI02m.net] >>718 この定義、よく見たら時枝記事の同値関係とは別物になってるな (スレ主のおかしさを指摘する分には問題ないが)。 抜きしちゃイカンな。以下で正しく清書する。