- 712 名前:132人目の素数さん mailto:sage [2022/10/10(月) 11:39:53.93 ID:/bF8CLbh.net]
- s∈[0,1]^N ごとにコイン C_s が与えられていて、どの C_s も表が 99/100 以上の確率で出るとする。
(1) 出題者は s∈[0,1]^N を一様分布(>>396)に従ってランダムに選び、コイン C_s を回答者に渡す。 (2) 回答者はコイン C_s を1回投げる。表が出たら回答者の勝ち。 ゲーム1:(1)を一回だけ実行し、そのあとは(2)を繰り返す(=出題は固定)。 ゲーム2:(1),(2)を繰り返す(=出題はランダム)。 ゲーム1の場合、回答者の勝率は自明に 99/100 以上になる。ところが、スレ主の屁理屈によれば、次のようになる。 ・ ゲーム1では s が固定であるが、それは作為であり、イカサマである。 コイン C_s は表が 99/100 以上の確率で出るのだから、そのようなコインに固定してしまったら、 回答者が高確率で勝てるのは当たり前である。例えて言えば、マージャンで積み込みして、 毎回役満で上がるみたいな。配牌を固定してさw そりゃ、役満で上がれるさ。でも、それはもう確率じゃないよねw なんと、ゲーム1はスレ主にとって「確率ではない」らしい。そのような認識こそ確率論から外れている。これこそ宗教である。 ちなみに、ゲーム2の場合はどうかと言えば、ゲーム2でも回答者の勝率は 99/100 以上である。 なぜなら、「どのコインも表ばかり出る」からだ。毎回ランダムに異なるコイン C_s が使われても、 そのコインは結局、表ばかり出るコインなのだから、回答者が高確率で勝利する。 しかし、スレ主の屁理屈によれば「ゲーム2だと回答者の勝率はゼロ」ということになる。 ここがスレ主の限界。
|

|