[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 12:40 / Filesize : 750 KB / Number-of Response : 1098
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

スレタイ 箱入り無数目を語る部屋3



474 名前:132人目の素数さん mailto:sage [2022/09/23(金) 19:46:22.27 ID:zpulaldV.net]
>>436
色々とナンセンスだな。

>つまり
>多項式 F(x)=a0+a1x+・・・+anx^n+・・・ と書けて
>また、(a0,a1,・・・,an,・・・)と座標でも書ける!
>これぞ、無限次元 線形空間!!

そのF(x)が本当に多項式なら、有限個の i を除いてa_i=0が成り立つ。よって、そのF(x)には最高次数が存在する。特に、

「最高次数が存在しない多項式がある」

とは主張できない。たとえば、F(x)=1+2x+3x^2+4x^3 の場合は、座標で表現してみても

(1,2,3,4,0,0,0,0,…)

と書けるにすぎない。これらの座標の中で、ゼロでない項の最大値は「3番目の座標」(左端を0番とカウント)
なので、対応する F(x) の最高次数は「3」ということになる。実際、F(x)=1+2x+3x^2+4x^3 は4次の多項式である。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<750KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef