- 436 名前:132人目の素数さん [2022/09/21(水) 07:15:04.50 ID:KGqCTMVw.net]
- >>405
>「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.」 だから、その決定番号d1,・・d100を全て有限に選ぶことに、 作為が入っているってこと(ランダム性の否定)(>>375ご参照) いいかな 1)出題された実数よりなる可算無限列に対して、その同値類は多項式環>>189を成す(>>361ご参照) 2)多項式環は、無限次元の線形空間である(都築 暢夫 広島大>>189) 3)無限次元の線形空間の点を無作為に選べば、当然無限次元の点。これを多項式に戻せば、やはり無限次元*) 4)多項式環が無限次元の線形空間であるのに、100個選んだ多項式がすべて有限次元になるなら、それは作為でしかないよ (なお、代数学ではこれで無問題。確率論では、ないのだから) 5)作為による確率計算で、P=99/100を導いても、それはもう普通の確率論ではない!w
|

|