[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 2ch.scのread.cgiへ]
Update time : 11/05 22:13 / Filesize : 168 KB / Number-of Response : 672
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

dx dy の意味は?★2



467 名前:132人目の素数さん mailto:sage [2023/11/20(月) 16:39:07.33 ID:1aWSKqzz.net]
微分形式に関して多様体論の教科書の導入部分に書かれてるようなことを1から説明してみるか

まず、流れとしてはR^nにおいての接平面だの微分形式だのの定義があって、それの拡張として多様体での定義が得られる。
以下ではR^nをn次元縦ベクトルのなす集合、R_nをn次元横ベクトルのなす集合とする。またUをR^nの開集合、f: U→Rとする。
【微分の定義】
任意に点x∈Uをとる。以下の式が成り立つ横ベクトルA∈R_nが存在すれば、「関数fは点xで微分可能」という。
f(x+h)=f(x)+Ah+o(h) (h→0)
このときAをfの点xにおける微分係数といい、f'(x)と表す。fが任意の点で微分可能ならfは微分可能といい、導関数f': U→R_nが定義される。以下fを微分可能であるとする
【R^nにおける微分形式の定義】
任意に点x∈Uをとる。f'(x)∈R_nなので以下のように線形関数df_x: R^n→Rを定義できる。
df_x(v)=f'(x)v
これが任意の点xで定義されるから、Uの元を添字にもつ線形写像の族dfを定義できる。このdfをfの外微分という。
【微分形式の直感的意味】
点p∈Uをとる。微分の定義より
f(p+h)-f(p)=df_p(h)+o(h) (h→0)
が成り立つ。逆に言えばこのような線形関数df_pが存在することが微分可能性の定義とも言える。気持ちとしては点pの近くで関数f(p+h)-f(p)を線形関数df_pによって近似できるということ。
【dxについて】
第i座標への射影(x_1, …, x_n)→x_iをx_iと書く。(多項式関数のイメージ。記号の濫用なので注意。)するとdx_iは第i座標への射影となる。特にn=1ならば(このとき一般的にx_1と書かずxと書くが)xは恒等関数なので、dxは恒等関数である。
【多様体について】
多様体とはざっくり言えば座標を一つ与えればR^nの議論に落とし込める空間のこと。なので多様体の接平面や微分形式は、座標を一つ与えればR^nの接平面や微分形式が誘導されるように定義される。詳細は自分で勉強して。

要するにdfは微小量ではなく線形関数です、という話






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧]( ´∀`)<168KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef