[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 22:23 / Filesize : 912 KB / Number-of Response : 1120
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

Inter-universal geometry と ABC予想 (応援スレ) 60



960 名前:132人目の素数さん mailto:sage [2021/11/03(水) 17:32:58.21 ID:bYOpU002.net]
>>854
(引用開始)
>>…>2>1>0
>>は降鎖ではない
>>なぜなら、a_1にあたる項がないからである
>だから、そこを指摘したのは、おれだよ
いや、みんな前から指摘してる
あなたが最近やっと気づいただけ
(引用終り)

ふふふw
再録>>837 珍説2(>>363より)の下記を見る
 1)「<上昇列 0<1<・・・ω という無限列があり得る」と
 2)「<上昇列 0<1<・・・<ω が有限列にしかなり得ない」

1.この珍説の主は、上昇列の定義*)と、降下列(=降鎖)の定義(松坂和夫 >>783)の差が、分かってなかったようです
( *)Encyclopedia of Mathematics Ordinal number https://encyclopediaofmath.org/wiki/Ordinal_number
 ”If the values of this sequence are ordinal numbers, and if γ<β<α implies that φ(γ)<φ(β), then it is called an ascending sequence.”)
2.まず卑近な例として、上り坂と下り坂と。いま目の前に坂があるとします
 上りか下りか? それは進行方向で決まる。進む方向次第
3.同様に、上昇列と降下列(=降鎖)の違いも、a1,a2,a3,・・と進むにつれて、a1<a2<a3<・・なら上昇列
 a1>a2>a3>・・なら降下列(=降鎖)
4.しかし日常なら、上り坂と下り坂は立ち位置で反転する。同様に、数列も有限列ならば、反転可能
 上昇列 a1<a2<a3<・・<anを、an>・・>a3>a2>a1 として、番号を付け替えて b1>・・>bn-2>bn-1>bn とできる(ここに、b1=an,・・,bn-2=a3,bn-1=a2,bn=a1 )
5.しかし、数列が自然数のような無限長列では、それ(自然数から無限長の降下列(=降鎖))は出来ないのです
 つまり、順序位相(下記)で、順序数ωが集積点になっているということ
 0,1,2,・・,ω と、 ω,・・,2,1,0 とは、始点と集積点の位置が、左右逆です
 ですから、ω,・・,2,1,0 を、降下列(=降鎖)の定義(松坂和夫 >>783)に当てはめると、
 a1=ωとして、次にa2=n(有限)とせざるを得ない
 単なる列 ω,・・,2,1,0 は存在しうるが、これをそのまま 降下列(=降鎖)の定義(松坂和夫 >>783)に当てはめることはできないのです

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<912KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef