[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 22:23 / Filesize : 912 KB / Number-of Response : 1120
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

Inter-universal geometry と ABC予想 (応援スレ) 60



908 名前:132人目の素数さん mailto:sage [2021/11/01(月) 23:39:15.25 ID:0PUyxUhS.net]
>>758 補足
>帰納法の仮定 1., 2. を満たす論理式 P(n) が与えられたとする。自然数の部分集合 A を A = { n ∈ N : ¬ P(n) } によって定める。
>この A が空集合であるということを示したい。
>そうでないと仮定すると、Aに属する最小の自然数 a を取ることができるが、P(0)は成り立っていることから a は0でない。
>従って、ある自然数 b について a = b + 1となっているが、a は A に属する最小の自然数であったということから、b not∈ A であり、P(b) は成り立つことになる。
>帰納法の仮定から P(a) も成り立つことになり、これは矛盾である。

ここの補足
下記なかけんの数学ノートが結構分かり易いね

https://math.nakaken88.com/textbook/cal-well-order-and-mathematical-induction/
なかけんの数学ノート
自然数の整列性と数学的帰納法 2020年12月19日
【目次】
最小元
自然数の整列性
自然数の整列性と数学的帰納法の原理
いろいろな数学的帰納法の形
おわりに

定理(自然数の整列性から数学的帰納法の原理)
N の、空でない部分集合には、必ず最小元があるとする。

以下の内容は証明というよりは、証明の概要のようなものです。
次のような集合 T を考えます。
T={n∈N?n not∈S}
つまり、
S の補集合です。このとき、
T=Φ なら、 S=N が言えます。
もし、 T が空集合でないとすると、最小元 m が存在します。(a)より、
m≠0 です。このとき、
w+=m となる w が存在します。
w<m なので、 m の最小性から w not∈T が成り立ちます。つまり
w∈S となります。(b)より w+=m∈S となりますが、これは
m∈T に矛盾します。
以上から、 T=Φ なので、
S=N が示せました。
これより、数学的帰納法の原理と整列性は同値だとわかります。
(引用終り)
以上






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<912KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef