[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/11 22:23 / Filesize : 912 KB / Number-of Response : 1120
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

Inter-universal geometry と ABC予想 (応援スレ) 60



784 名前:132人目の素数さん mailto:sage [2021/10/30(土) 17:35:42.07 ID:zgBubH+2.net]
>>695
>だって、正則性公理により無限長の降鎖がないっていったら
>「いや、無限長の昇鎖はある!」(だから降鎖もある)
>って速攻で文句つけてたじゃん 

なんか、誤解があると思うな
どの発言だい? 他人の発言と勘違いじゃね?

正則性公理が禁止しているのは、”∈”を使う二項関係を、
集合の大小 ”<”と見なしたときに
空集合{}が最下層のどん底であり、
”・・{}∈{}∈{}∈{} ”みたいな無限連鎖を禁止するってことです

で、一般の二項関係の”<”、つまり、普通の実数の大小と考えると
負数の連鎖
 0>-1>-2>-3>・・>-n>・・
は考えられるよね。他にも、有理数の大小とか。それらは明らかに、無限下降列
で、明らかにZFC内で、実数の集合Rは構成できるから、一般的な負数の連鎖などは、ZFC内で実現可能です

>descending chain condition とか
>ascending chain confition とかでは
>おサルの珍説が救えるはずないよね

これ正しいよ
それが貴方には
分からないんですねw

>>>693
>>もとの二項関係は、”<”だったよね
>>それが、松坂で”∈”に変わっている・・・
>ん?おまえ、なんかカン違いしてない?
>二行目の「松坂で”∈”に変わっている」ってどこのこと?

そもそもは
おサルさん、あんたが引用した
(>>628より)
>昇鎖条件
>https://ja.wikipedia.org/wiki/%E6%98%87%E9%8E%96%E6%9D%A1%E4%BB%B6

ここの昇鎖条件 ja.wikipedia では、二項関係”<”とかで、”∈”の二項関係ではない
ところが、あんたの証明>>654 で、
「まず、集合Aについて、a_n∈Aとなる無限長の降鎖(a_n)n∈Nがあったら、
集合{a_n}n∈Nは最小元を持たないから、Aは整列集合でない」
となって、これが>>663
”実は>>654の証明は
松坂和夫氏の「集合・位相入門」の第3章§3の問2
の解答をほぼそのまま書いてます”
とゲロしちゃってるよね

誤魔化そうとしても無駄だよ






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<912KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef