- 253 名前:132人目の素数さん mailto:sage [2021/10/14(木) 19:22:29.54 ID:mdAX1Bxg.net]
- 述語論理に関するFDlU9EvDの初歩的なつまづき
それは ∀x∈N. ∃y∈N. y>x と ∃y∈N. ∀x∈N. y>x を 混同した点にある 例えば、以下の論理式は正しい ∀x∈N. ∃y∈N. y>x (いかなる自然数xについても、それぞれある自然数yが存在して、y>xである) なぜならxが先に決まり、そのxに依存してそれぞれyが後から決まるからである (例えばx=nとして、y=n+1とすることができる) 一方、∃yと∀xの順序を入れ替えた、以下の論理式は誤りである ∃y∈N. ∀x∈N. y>x (ある自然数yが存在して、いかなる自然数xについても、y>xである) なぜならxとは無関係にyが先に決まるからである (いかなる自然数よりも大きな自然数は存在し得ない)
|

|