- 1 名前:132人目の素数さん mailto:sage [2021/06/17(木) 20:18:50.48 ID:lnjH0V31.net]
- さあ、今日も1日がんばろう★☆
前スレ 分からない問題はここに書いてね 467 rio2016.5ch.net/test/read.cgi/math/1619884204/ (使用済です: 478) 数学@5ch掲示板用 ☆掲示板での数学記号の書き方例と一般的な記号の使用例 mathmathmath.dotera.net/ ☆激しくガイシュツ問題 web.archive.org/web/20181107033930/ www.geocities.co.jp/CollegeLife-Club/7442/math/index.htm
- 970 名前:132人目の素数さん mailto:sage [2021/07/16(金) 23:46:55.40 ID:JHDx9yyI.net]
- この(1)はα/sinα?
(2)から自信ないっすー https://i.imgur.com/7uLJ7Sx.jpg
- 971 名前:132人目の素数さん mailto:sage [2021/07/17(土) 00:52:24.80 ID:S0X2C5WD.net]
- あるお菓子には、K種のおまけのうち1つが等確率で付属しており、任意の異なるr種類(K≧r)のおまけを集める事を考える。お菓子を1ずつ買っていくとき、n個目に買ったお菓子のおまけで、初めてr種類が揃う確率をp(n,r)とする。
(1)p(n,r)=Σ[i=1,n+1-r] C_i・p(n-i,r-1) と表すとき、C_iをK,r,iの式で表せ。 (2)p(n,r)=A・p(n-1,r)+B・p(n-1,r-1) と表すとき、A,BをK,rの式で表せ。 (3)θの多項式 P(θ,r)を P(θ,r)=Σ[n=0,∞]p(n,r)θ^nと定めるとき、(K-r+1)θ・P(θ,r)=(K-r+1)θ・P(θ,r-1)が成り立つ事を示せ。 (4)r種類揃うために購入しなければならないお菓子の個数の期待値がP’(1,r)であることを示せ。(P’はθによるPの微分) (5)K=r=7のとき おまけを7種類そろえるために購入しなければならないお菓子の個数の期待値を求めよ
- 972 名前:132人目の素数さん mailto:sage [2021/07/17(土) 01:16:47.84 ID:U/DUL19t.net]
- >>924
なんか所々おかしい
- 973 名前:132人目の素数さん [2021/07/17(土) 01:40:14.21 ID:bgEk2IYJ.net]
- 次の議論が何がおかしいか指摘しなさい
2021C37を4で割った余りを求めよう。 まずこれは組合せの数だから整数である。2021C37の分子には、2021*2020*2019*2018・・・と並び、MOD 4でいずれかが0と合同である。 よって、2021C37を4で割った余りは0である。
- 974 名前:132人目の素数さん [2021/07/17(土) 01:58:58.98 ID:SSyeltFm.net]
- >>926
分子の因数が持つ2 と 分母の因数が持つ2 の数を 考えていないのがダメな点だな。 4 = 2x2 なので、分子の因数が2つ以上、分母にキャンセルされずに 生き残らなければならない。 (43C37 を4で割ったら余りが2になるのと同じ) []- [ここ壊れてます]
- 976 名前:132人目の素数さん mailto:sage [2021/07/17(土) 04:55:35.70 ID:Js3VOks3.net]
- 2021 = 43*47
2020 = 4*5*101 2019 = 3*673 2018 = 2*1009 2017 = prime, 2016 = 32*9*7 2015 = 5*13*31 2014 = 2*19*53 2013 = 3*11*61 2012 = 4*503 2011 = prime, 2010 = 2*3*5*67 2009 = 49*41 2008 = 8*251 2007 = 9*223 2006 = 2*17*59 2005 = 5*401 2004 = 4*3*167 2003 = prime, 2002 = 2*7*11*13 2001 = 3*23*29 2000 = 16*125 1999 = prime, 1998 = 2*27*37 1997 = prime, 1996 = 4*499 1995 = 3*5*7*19 1994 = 2*997 1993 = prime, 1992 = 8*3*83 1991 = 11*181 1990 = 2*5*199 1989 = 9*13*17 1988 = 4*7*71 1987 = prime, 1986 = 2*3*331 1985 = 5*397 これを 37! で割ると 25*7*13*19*41*43*47*53*59*61*67*71*83*101*167*181*199*223*251*331*397*401*499*503*673*997*1009*1987*1993*1997*1999*2003*2011*2017
- 977 名前:132人目の素数さん mailto:sage [2021/07/17(土) 06:14:47.28 ID:kwsq3o43.net]
- >>903
尿瓶とは職種の言えない医療従事者尿瓶洗浄係のことである。どうやらシリツ卒らしい。
- 978 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:11:30.88 ID:8rAjzYz7.net]
- >>929=尿瓶って分からないくらい日本語不自由なのかよ
- 979 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:18:28.81 ID:Js3VOks3.net]
- >>890
|λ|≠ 1 かつ |A|≠0 … (*) したがって |E+λA| = |A||A~+λE| = |A||A+λ~E| ≠ 0 E+λA は正則 〔補題〕 ユニタリー行列Aの固有値の絶対値は |μ|=1, Aは正則 |A| ≠ 0. ・(複素)内積の双線形性 (λu,μv) = λ~μ(u,v) u≠o ⇔ (u,u)≠0 ・ユニタリー行列Aは(複素)内積を保存する。 (Au, Av) = (u,v) いま Aの固有ヴェクトルをu、固有値をμとする。 Au = μu, u≠o. これと上記から |μ| = 1 かつ |A| ≠ 0.
- 980 名前:132人目の素数さん [2021/07/17(土) 07:34:59.35 ID:fA1FXZeG.net]
- BC=a,CA=b,AB=cの△ABC において、ABの中点をM、ACの中点をNとする。
辺BC上で、以下の性質を持つ点Pが存在する領域を求めよ。 (性質) ∠MPNは鋭角である。
- 981 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:43:43.87 ID:OCzs9Qig.net]
- >>924
(5) 18.15
- 982 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:50:02.92 ID:8rAjzYz7.net]
- >>929
もうお前自身=尿瓶って刷り込まれてるみたいだなww
- 983 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:55:53.02 ID:OCzs9Qig.net]
- >>933
100万回シミュレーションして分布の形をみてみる。オマケで95%信頼区間がでてくる。 https://i.imgur.com/xUODahz.png 中央値17,最頻値は13くらいだな。
- 984 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:56:49.64 ID:OCzs9Qig.net]
- >>934
ライセンスを持って仕事をしていれば職種を名乗るからね。
- 985 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:59:47.13 ID:yPKXZIRI.net]
- 名乗るだけなら誰でもできるぞ
- 986 名前:132人目の素数さん mailto:sage [2021/07/17(土) 07:59:55.95 ID:8rAjzYz7.net]
- 名乗るだけなら誰でもできるよ?
容疑者とかねw 自称会社員とかそのクチかな?
- 987 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:04:13.35 ID:OCzs9Qig.net]
- 改題
あるお菓子には、7種のおまけのうち1つが等確率で付属しており、全種類のおまけを集める事を考える。 最初にお菓子を7個買って7種類のおまけが集まれば終了。 集まらなければそれらを捨てて8個のお菓子を買う。 それで全種類のおまけが集まればそれで終了、集まらなければそれらを捨てて8個のお菓子を買う、これを全種類のおまけが集まるまで続ける。 全種類のおまけが集まったときに買ったお菓子の数の期待値を求めよ。
- 988 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:05:13.99 ID:OCzs9Qig.net]
- ");
//]]>-->
- 989 名前:7" rel="noopener noreferrer" target="_blank" class="reply_link">>>937
それすらできない医療従事者が尿瓶洗浄係ってことよ。 []- [ここ壊れてます]
- 990 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:06:08.38 ID:yPKXZIRI.net]
- >>940
なんで?
- 991 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:06:42.19 ID:yPKXZIRI.net]
- もともとの問題も自演だったぽいな
- 992 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:08:33.31 ID:8rAjzYz7.net]
- 匿名掲示板で名乗る意味なんかないのに得意気になってるからなw
しかし証拠はないw
- 993 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:41:12.26 ID:OCzs9Qig.net]
- 臨床問題(厳密解は不要、信頼区間が大切)
A型、O型、B型、AB型の割合を4 : 3 : 2 : 1とする 大勢の人がいるのでこの割合は常に一定とする。 全血液型の血液を集めたい。 供血者1人に1万を払うとして予算を組む。 (1)必要な予算の期待値を求めよ。 (2)(1)の予算を超過する確率を求めよ (3)いくら予算を組めば95%の確率で全血液型を集めることができるか?
- 994 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:44:02.71 ID:OCzs9Qig.net]
- >>942
尿瓶洗浄係=自演認定厨 臨床問題は厳密解よりも分布が大切!だから俺は大抵、95%信頼区間算出の問題を好む。
- 995 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:45:18.03 ID:OCzs9Qig.net]
- >>943
医療従事者と名乗るのに職種を言えないのは尿瓶洗浄係と推定しても強ち間違いじゃないと思うね。 ライセンスを持って仕事をしていれば職種を普通にいえるから。
- 996 名前:132人目の素数さん [2021/07/17(土) 08:48:17.82 ID:fA1FXZeG.net]
- >>944
それ既に「分かってる」問題でしょ ここは「分からない」問題を書いて教えを請う所 医者という設定を守りたいその執念には呆れるね
- 997 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:49:57.34 ID:8rAjzYz7.net]
- >>946
推定という名の妄想w
- 998 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:55:55.11 ID:yPKXZIRI.net]
- >>945
スレタイ読んだら? 自作問題をひけらかすスレじゃないよ
- 999 名前:132人目の素数さん mailto:sage [2021/07/17(土) 08:56:30.09 ID:yPKXZIRI.net]
- >>945
尿瓶洗浄係=自演認定厨 ↑これなんで?
- 1000 名前:イナ mailto:sage [2021/07/17(土) 10:36:13.04 ID:M68oykY/.net]
- 前>>919
>>920 高さ y=1-tt に 2πt dt を掛けて 0<t<1 で積分した? ←正解です。
- 1001 名前:132人目の素数さん mailto:sage [2021/07/17(土) 11:36:27.18 ID:S0X2C5WD.net]
- 変分法の問題なんですけど...
https://i.imgur.com/OljXLzH.jpg
- 1002 名前:132人目の素数さん mailto:sage [2021/07/17(土) 11:42:53.78 ID:fw9+IRZL.net]
- >>901
精度の定義がよくわからんが 感度も特異度も70%すなわち 偽陰性率も偽陽性率も30%という設定だろうな。
- 1003 名前:132人目の素数さん [2021/07/17(土) 12:12:03.54 ID:ybwzPnMm.net]
- UV曲線がV=640000/Uで
Vが欠員率、Uが失業者数、失業率が4%としたときの就業者数はいくらになりますか? 一応… 失業率=失業者数/労働力人口=失業者数/(就業者数+失業者数)
- 1004 名前:132人目の素数さん [2021/07/17(土) 12:12:29.77 ID:ybwzPnMm.net]
- すみません、経済学なのですが、向こうの板全く機能してなかったので、分かる方いたら教えて欲しいです
- 1005 名前:132人目の素数さん mailto:sage [2021/07/17(土) 12:14:48.99 ID:fw9+IRZL.net]
- >>953
> pLR=0.7/0.3 #TP/FP > nLR=0.3/0.7 #FN/TN > pOdds=1/999*pLR > nOdds=1/999*nLR > ppv=pOdds/(1+pOdds) ; ppv [1] 0.002330226 > npv=1-nOdds/(1+nOdds) ;npv [1] 0.9995712
- 1006 名前:132人目の素数さん mailto:sage [2021/07/17(土) 12:21:38.07 ID:fw9+IRZL.net]
- >>956
検査前確率が低い疾患に検査しても陽性的中率はあがらんという好例だな。 昔、80代の骨折患者の術前スクリーニング検査でHIV陽性(ELA法)になったけど予想通りの偽陽性だったな。
- 1007 名前:132人目の素数さん mailto:sage [2021/07/17(土) 12:2
]
- [ここ壊れてます]
- 1008 名前:4:48.76 ID:2/BX+UC9.net mailto: はい尿瓶 []
- [ここ壊れてます]
- 1009 名前:132人目の素数さん mailto:sage [2021/07/17(土) 12:53:17.57 ID:ff4gyj2g.net]
- 偽陽性と偽医者
- 1010 名前:132人目の素数さん [2021/07/17(土) 14:30:56.34 ID:SSyeltFm.net]
- >>926 >>927
中学生レベルの説明だけど これで合ってるよな? 例えば 7C3 は 35(通り) となり、 3で割り切れるとは限らない…それと同じ。 計算の途中で分子にある因数 pが 全てキャンセルされちまえば 計算結果の整数は 3の倍数とはなり得ない。
- 1011 名前:132人目の素数さん [2021/07/17(土) 14:33:29.38 ID:SSyeltFm.net]
- >>957
1つ、検査することが目的 2つ、ワクチンを使い切ることが目的 こういう現実的、政治的な事情で統計的確率を無視した 馬鹿げたこと、学生への接種が行われようとしているのに 驚きを感じる。
- 1012 名前:132人目の素数さん [2021/07/17(土) 15:08:03.20 ID:qBgrtYuw.net]
- ワクワクチンポ
- 1013 名前:132人目の素数さん mailto:sage [2021/07/17(土) 15:25:48.99 ID:nfqZcocM.net]
- >>901
やはり、信頼区間を設定したこういう問題の方が実践的だな。 実践問題 「あなたは尿瓶洗浄係ですか?」という質問で尿瓶洗浄係かどうかを判断するとき 感度は70%[95%信頼区間は60-80%]、特異度70%[95%信頼区間は60-80%]とする。 尿瓶洗浄係である検査前確率分布に一様分布を仮定する。 ある罵倒厨が「あなたは尿瓶洗浄係ですか?」に「いいえ」と答えたとき 尿瓶洗浄係である確率の期待値と95%信頼区間を求めよ。
- 1014 名前:132人目の素数さん mailto:sage [2021/07/17(土) 15:36:15.23 ID:nfqZcocM.net]
- >>901
> ppv=pOdds/(1+pOdds) ; ppv [1] 0.002330226 > npv=1-nOdds/(1+nOdds) ;npv [1] 0.9995712 として順に ppv 1-ppv 1-npv npv
- 1015 名前:132人目の素数さん mailto:sage [2021/07/17(土) 15:55:47.45 ID:Js3VOks3.net]
- >>926
2021C37 = Π[n=1,37] (1984+n)/n, ところで 1984 = 31・2^6 = (11111000000)_2 より 1≦n≦37, n≠32 ⇒ (1984+n)/n ≡ 1 (mod 4) n=32 ⇒ (1984+n)/n = 2016/32 = 63 ≡ 3 (mod 4) ∴ 2021C37 = Π[n=1,37] (1984+n)/n ≡ 3 (mod 4) [面白スレ37.482]
- 1016 名前:132人目の素数さん mailto:sage [2021/07/17(土) 15:56:52.79 ID:yPKXZIRI.net]
- 実践問題
「あなたは尿瓶洗浄係ですか?」という質問で尿瓶洗浄係かどうかを判断するとき 感度は70%[95%信頼区間は60-80%]、特異度70%[95%信頼区間は60-80%]とする。 尿瓶洗浄係である検査前確率分布に一様分布を仮定する。 尿瓶が「あなたは尿瓶洗浄係ですか?」に「いいえ」と答えたとき 尿瓶洗浄係である確率の期待値と95%信頼区間を求めよ。 よろしくお願いします
- 1017 名前:132人目の素数さん mailto:sage [2021/07/17(土) 16:10:00.84 ID:M68oykY/.net]
- 前>>919
>>932 MNの中点を中心とする半径a/2の円の外側の領域にある辺BC。
- 1018 名前:イナ mailto:sage [2021/07/17(土) 16:10:25.12 ID:M68oykY/.net]
- 前>>919
>>932 MNの中点を中心とする半径a/2の円の外側の領域にある辺BC。
- 1019 名前:132人目の素数さん mailto:sage [2021/07/17(土) 16:14:03.37 ID:aVXdjx+a.net]
- 尿瓶ジジイまだ生きてたのか
- 1020 名前:132人目の素数さん mailto:sage [2021/07/17(土) 16:32:20.19 ID:U/DUL19t.net]
- >>965
2行しか書いてなくてもちゃんと伝わる人には伝わるんだよな
- 1021 名前:132人目の素数さん mailto:sage [2021/07/17(土) 17:24:24.09 ID:zBQptJbj.net]
- >>965
横から申し訳ない > 1≦n≦37, n≠32 ⇒ (1984+n)/n ≡ 1 (mod 4) これがどういうことなのかわからない なぜ32が除かれるのかもわからない どういうことなんです?
- 1022 名前:132人目の素数さん mailto:sage [2021/07/17(土) 17:49:15.85 ID:Js3VOks3.net]
- >>952
はい、その通りですね。
- 1023 名前:132人目の素数さん mailto:sage [2021/07/17(土) 18:01:46.78 ID:Js3VOks3.net]
- >>970
しかし拙者は1984だから、お主(1988)より4つ上でござるよ。 >>971 2ベキで約分したとき、4の倍数+1 になる (n≠32) 有限体 F_4 での割り算を考える。
- 1024 名前:132人目の素数さん mailto:sage [2021/07/17(土) 18:04:15.77 ID:U/DUL19t.net]
- >>971
例えばn=12なら[xxx]を2進数表示として 1984+12 = [11111000000] + [1100] = [11111001100] で元の[1100]と末尾の0の数が同じになりその0を取り除いた [111110011] と [11] は末尾ふたつが一致するのでmod4で商は1になる ただしそれは末尾2つ取り除いて1が2つ以上残るかもしくは32の位でない場合でn=32の場合だけ 1984+32=[11111100000] 32=[100000] で末尾の0を除くと [111111] ≡ 3(mod4) [1]≡1 (mod 4) となりその商は3になってしまう
- 1025 名前:132人目の素数さん mailto:sage [2021/07/17(土) 18:26:23.51 ID:khjsuZT1.net]
- 尿瓶の相手すんな
- 1026 名前:132人目の素数さん mailto:sage [2021/07/17(土) 18:51:04.28 ID:zBQptJbj.net]
- >>973>>974
すみません もっと前の
- 1027 名前:i階からわかっていないようで
例に上げられたn=12を具体的に計算すると1996/12ですが、なんでこれがmod4で1になるのかわかりません [] - [ここ壊れてます]
- 1028 名前:132人目の素数さん mailto:sage [2021/07/17(土) 18:54:08.23 ID:Js3VOks3.net]
- >>952
実数軸上の関数 f=f(x) であって、f(0)=0, f(1)=1 となるものの集合をℱとす る。ℱの元fに対して、I=I[f] を I[f] = ∫_0^1 [ f(x)^2 + {f '(x)}^2 ] dx と定義する。Iを最小にするℱの元を求めたい。以下の設問に答えよ。ただし、本問題 において考える関数はすべていたるところ十分滑らかな関数とする。 (1) 任意の f, g∈ℱ と任意の t∈[0,1] に対して I[(1-t)f + fg] = (1-t)I[f] + tI[g] − t(1-t)I[f-g] となることを示せ。 (2) 任意の g∈ℱ に対して、 (d/dt)I[(1-t)f + tg] |_{t=0} = 0 が成り立つような f∈ℱ を考える。fが満たすべき常微分方程式を導け。その 際、次の事実を利用してよい。 関数Fが、G(0)=G(1)=0 となる任意の関数Gに対して、 ∫_0^1 G(x) F(x) dx = 0 を満たすなら、x∈[0,1] に対して F(x)=0 である。 (3) 設問(2)で導いた常微分方程式の解はIを最小にする。その理由を説明せよ。 (4) 設問(2)で導いた常微分方程式の解を求めよ。
- 1029 名前:132人目の素数さん mailto:sage [2021/07/17(土) 19:09:30.23 ID:zBQptJbj.net]
- >>973>>974
何度もすみません 分数の合同式というのを検索してちょこっとわかりました 拡張された概念で、4で割った余りというように考えるとおかしなことになるってことなんでしょうか なんで拡張してもOKなのかは今ひとつわかりませんが
- 1030 名前:132人目の素数さん mailto:sage [2021/07/17(土) 19:41:26.44 ID:Js3VOks3.net]
- 有限体を勉強すれば分かると思うけど。
(無理して分かった積りになるとケガするかも) >>952 (1) 訂正 I[(1-t)f + tg] = … ですた。 (2) δI[(1-t)f + t g] / δt = ∫_0^1 2(f(x)g(x) + f '(x)g '(x)) dx = [ 2f '(x)g(x) ](x=0,1) + ∫_0^1 2(f(x)-f "(x))g(x) dx ←部分積分 = ∫_0^1 2(f(x)-f "(x))g(x) dx ここで g(x) は任意の関数だったから f(x) - f "(x) = 0, (4) 境界条件から f(x) = sinh(x)/sinh(1),
- 1031 名前:132人目の素数さん mailto:sage [2021/07/17(土) 20:05:44.18 ID:U/DUL19t.net]
- まぁコレをチャンスと見て初等整数論ちょっと勉強するのがいいかも
ちなみに今回の話でキーになるのは“2進整数環”、すなわち分母が奇数の有理数の全体の集合、そして大切な定理は thm Rを2進整数環、m,nが整数の時 m≡n (mod 2^k) ( in Z ) ⇔m ≡ n ( mod 2^k) ( in R ) すなわち4で割ったあまりをZの中で考えてもRの中で考えても同じというのがミソ だったら便利なRのなかで計算したらいいやんとなる
- 1032 名前:132人目の素数さん [2021/07/17(土) 20:38:50.50 ID:bgEk2IYJ.net]
- >>974
整数問題自体が学習指導要領から削除されている昨今で、しかも、本問のような整数問題を、2進数表示で解くような類題はみたことがないから ゴミ
- 1033 名前:132人目の素数さん [2021/07/17(土) 20:48:57.44 ID:bgEk2IYJ.net]
- 上にも書いているが、 4a+1C4b+1を4で割った余りと aCbを4で割った余りが一致するという補題があるから二進数など使う必要がない
また、補題という考え方に関しては、初等数学の難問に頻出であるが、現在の受験数学の解法ではほとんどありえないという点では高等テクニックだが 上の二進数のようにわけのわからないことを言われるよりマシ
- 1034 名前:132人目の素数さん mailto:sage [2021/07/17(土) 20:52:42.41 ID:U/DUL19t.net]
- >>982
お前以外のほとんどに伝わってるやん?wwwwww
- 1035 名前:132人目の素数さん mailto:sage [2021/07/17(土) 20:54:50.34 ID:Js3VOks3.net]
- >>979
f。(x) = sinh(x)/sinh(1) = (e^x - e^{-x})/(e-1/e), I[f。] = cosh(1)/sinh(1) = (e+1/e)/(e-1/e) = 1.3130352855 []- [ここ壊れてます]
- 1037 名前:132人目の素数さん [2021/07/17(土) 21:03:03.07 ID:bgEk2IYJ.net]
-
平成の文科省の指導要領が分かってないとしかいいようがない、 昭和58年より前は教えていたらしいが、その後随時 公立学校では 初等幾何 整数 関数等式 組合せ論を教えないことにした。 高等学校でも整数問題は授業で一切扱わない。 こういう社会になっているので、 2進数表示で解くとかいっても一般人に通用しない。 習ってねーぞと言って殴られるだけ。
- 1038 名前:132人目の素数さん mailto:sage [2021/07/17(土) 21:14:40.48 ID:U/DUL19t.net]
- >>985
自分の知らない世界に出会った時、それを恥じるのではなく自分がまた新しい数学に出会えたと喜べる人、悪態ついて終わりの人 もうお前は成長していくには心が年を取りすぎてるんだよ
- 1039 名前:132人目の素数さん [2021/07/17(土) 21:18:55.46 ID:bgEk2IYJ.net]
- >>986
だから学校で教えてないつってんだろ、そんなものは社会には存在しないのと一緒なんだよ
- 1040 名前:132人目の素数さん mailto:sage [2021/07/17(土) 21:23:37.63 ID:U/DUL19t.net]
- >>987
違う 他人の忠告、助言など一切聞く耳を持たず、数学の教科書などもはや開かなくなって数十年 お前の数学は終わったんだよ 別の趣味探せば? 俳句とか 筋トレとか意外に楽しいぞ
- 1041 名前:132人目の素数さん [2021/07/17(土) 21:33:28.05 ID:bgEk2IYJ.net]
- >>988
数学科のお前が調子に乗っているだけで国の法律ではお前が知っていることは一般人には教えていないから一般人に言っても通用しない また一般人が生活していく上で、 上記の事項を使う機会もない。 自分文系な上に習ってないんで、と言われればそれ以上問題になることがない
- 1042 名前:132人目の素数さん mailto:sage [2021/07/17(土) 21:37:46.04 ID:pf4H4fpE.net]
- 習ってないからできませ〜ん。
は典型的な無能じゃん。
- 1043 名前:132人目の素数さん mailto:sage [2021/07/17(土) 21:38:51.66 ID:U/DUL19t.net]
- 天才達の偉大な遺産よりも文科省がどうたらいう無能wwww
- 1044 名前:132人目の素数さん [2021/07/17(土) 21:45:08.92 ID:bgEk2IYJ.net]
- 社会は法律で動いているから、お前が自慢しても、お前が知っているだけで終わりになる。
- 1045 名前:132人目の素数さん [2021/07/17(土) 21:55:27.89 ID:bgEk2IYJ.net]
- 仮に、法律=タテマエ が 無能でゴミで 存在しない方がいいというのなら 交番の警官の男や刑務所を襲撃してこい
それもできず、都合のいい時はタテマエに従い、 このスレでだけ粋がる、まじでクソ
- 1046 名前:132人目の素数さん mailto:sage [2021/07/17(土) 22:15:02.27 ID:U/DUL19t.net]
- ハイハイ能無し爺さん
俳句でも詠んでてねwwww
- 1047 名前:132人目の素数さん mailto:sage [2021/07/17(土) 23:13:56.49 ID:aVXdjx+a.net]
- 空白ガイジと尿瓶は失せろ
- 1048 名前:132人目の素数さん [2021/07/17(土) 23:16:30.68 ID:KLmpumib.net]
- 自分が勉強したことのない知識は一切認めないという
貴重な存在は大切に扱った方がよい
- 1049 名前:132人目の素数さん mailto:sage [2021/07/17(土) 23:20:02.07 ID:U/DUL19t.net]
- 山の賑わいてかwww
- 1050 名前:132人目の素数さん mailto:sage [2021/07/17(土) 23:22:09.94 ID:b7y9a+7L.net]
- 今日も今日とて騒がしい
- 1051 名前:132人目の素数さん mailto:sage [2021/07/17(土) 23:22:48.41 ID:b7y9a+7L.net]
- 明日も明後日も変わらんのかね
- 1052 名前:132人目の素数さん mailto:sage [2021/07/17(土) 23:23:31.97 ID:aVXdjx+a.net]
- 1000なら尿瓶と空白ガイジは出禁
- 1053 名前:1001 [Over 1000 Thread.net]
- このスレッドは1000を超えました。
新しいスレッドを立ててください。 life time: 30日 3時間 4分 42秒
- 1054 名前:過去ログ ★ [[過去ログ]]
- ■ このスレッドは過去ログ倉庫に格納されています
|

|