[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 1101- 2ch.scのread.cgiへ]
Update time : 04/13 07:33 / Filesize : 838 KB / Number-of Response : 1133
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

ガロア第一論文及びその関連の資料スレ



338 名前:132人目の素数さん mailto:sage [2023/02/09(木) 00:28:01.09 ID:w492Wd/Q.net]
>>294
指数関数の級数展開
e^x=1+x+1/2! x^2+1/3! x^3+・・+1/n! x^n+・・
で、xを複素数iθに拡張する e^iθ だね
あとは、下記の通りだな(収束は下記の[注 1]にも詳しい)

(参考)
https://ja.wikipedia.org/wiki/%E3%82%AA%E3%82%A4%E3%83%A9%E3%83%BC%E3%81%AE%E5%85%AC%E5%BC%8F
オイラーの公式
e^iz=cos z+isin z
指数関数と三角関数
実関数としての指数関数 ex, 三角関数 cos x, sin x をそれぞれマクローリン展開すると
e^x=1+x+1/2! x^2+1/3! x^3+・・+1/n! x^n+・・

これらの冪級数の収束半径が ∞ であることは、ダランベールの収束判定法によって確認することができる[鋳 1]。
この公式は、歴史的には全く起源の異なる指数関数と三角関数が、複素数の世界では密接に結びついていることを表している。

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1026864290
chiebukuro.yahoo
nis********さん
2009/6/3 14:43
1回答
e^xの収束半径は無限大らしいのですが、どのように証明すればよいですか??
わかる方解説お願いしますm(__)

ベストアンサー
このベストアンサーは投票で選ばれました
pgs********さん
2009/6/3 15:45
べき級数Σ〔n=0→∞〕(Cn)x^nとすれば、収束半径rは
r=1/ρ
(ただし、ρ=lim〔n→∞〕|Cn+1/Cn|)
で与えられます。
この問題では、Cn=1/n!、Cn+1=1/(n+1)!ですから、
ρ=lim〔n→∞〕|(1/(n+1)!)/(1/n!)|
=lim〔n→∞〕1/(n+1)=0
したがって、r=∞です。

https://ja.wikipedia.org/wiki/%E9%9A%8E%E4%B9%97
階乗
n の階乗(かいじょう、英: factorial)n?!
階乗の増大度
「スターリングの近似」も参照
n が増えるにつれて、階乗 n?! は n を変数とする任意の多項式函数あるいは指数函数よりも早く増加する(ただし、二重指数関数よりは遅い)。






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<838KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef