<論点を整理しましょう> 論点1.査読はあったのか? 論点2.ショルツェ氏は、最初「Cor3.12までは自明で、Cor3.12の証明が分からない」と言っていた がしかし、WoitブログでのDupuy氏との論争で、突然”extremely difficult notion of a Hodge theater”(「ホッジ劇場が超難しい」)とか言い出したよね(>>211) 論点3.ショルツェ氏の方が正しく、IUT側の多数の数学者たちは全員間違い? 論点4.望月IUTが特別扱い?
<各論点について> 1)論点1について、 ・下記woitブログのOP氏が、初期にIUTレフェリーチームへの参加打診があったが断ったとあります。(なお、OP氏は多分外国人ではないかと思われます) つまりは、「the referee team for the IUT papers」なるものが存在し、OP氏は辞退したけれども、査読は行われたであろうことは確かでしょう (参考) https://www.math.columbia.edu/~woit/wordpress/?p=11723 Why the Szpiro Conjecture is Still a Conjecture Posted on April 18, 2020 by woit OP says: April 18, 2020 at 4:41 pm I was asked early on to be on the referee team for the IUT papers. I have great respect for Mochizuki’s mathematical talent, and no doubt in the sincerity of his belief that he has a proof of the main result. But I could see that the referees would not only
662 名前:have to check the details of an extremely long work written in a very obscure style (which didn’t provide insightful reasons for confidence in the approach being used).
OP says: April 18, 2020 at 8:49 pm Just to clarify: I wasn’t a referee on the IUT papers, but rather was invited to serve as one, and I declined (giving the editorial board my recommendation for how I thought would be best to proceed).
4)論点4について ・IUTの査読については、上記の1)の事実から、「the referee team for the IUT papers」なるものが存在して、「査読OK」を出した ・もちろん、「査読OK」が即数学界全体の了解事項でないことはその通り ・その意味で、特別扱いでも例外扱いでもない ・「the referee team for the IUT papers」なるものが存在する以上、それを差し置いて、玉川氏の一存で「OK」を出せるはずもない ・IUTは、通常の作法通りです。査読が終わって、今年の国際会議で議論される。疑義があるなら、それに参加すれば良いのです
補足 似たような意見が、下記woit氏のnaf氏発言 ”it was a shock, on reaching Corollary 3.12, to realise that nothing is really proved. (One might say that this shows my lack of understanding” で、いまIUT IIIを見ると、組み(Theorem 3.11, Corollary 3.12)で、証明が分からんってことだと推察します ・つまり、定理3.11は証明ば実質1行”Proof. The various assertions of Theorem 3.11 follow immediately from the definitions and the references quoted in the statements of these assertions — cf. also the various related observations of Remarks 3.11.1, 3.11.2, 3.11.3, 3.11.4 below.” (一方定理3.11の中身は、延々P153〜159まで7頁もある) ・Cor3.12は、命題はP173〜174の1頁くらいで、証明はP174〜186まで13頁ほど ・Cor3.12は、定理3.11が分からないと理解できないですよ。組み(Theorem 3.11, Corollary 3.12)で、ワケワカと推察します ・で、やっぱホッジ劇場から理解しないと、結局だめなのでしょうね(私には全部お経ですがw)
(参考) https://www.math.columbia.edu/~woit/wordpress/?p=11723 Why the Szpiro Conjecture is Still a Conjecture Posted on April 18, 2020 by woit naf says: April 18, 2020 at 2:44 pm I myself devoted most of three months way back in 2013 to going through the papers and it was a shock, on reaching Corollary 3.12, to realise that nothing is really proved. (One might say that this shows my lack of understanding, but the point is that Mochizuki himself says that this is the key part of his proof and if you see how the proof is written it is clear that there is something seriously wrong here.)
www.kurims.kyoto-u.ac.jp/~motizuki/Inter-universal%20Teichmuller%20Theory%20III.pdf INTER-UNIVERSAL TEICHMULLER THEORY III: ¨ CANONICAL SPLITTINGS OF THE LOG-THETA-LATTICE P153 Theorem 3.11. (Multiradial Algorithms via LGP-Monoids/Frobenioids) Fix a collection of initial Θ-data P159 Proof. The various assertions of Theorem 3.11 follow immediately from the definitions and the references quoted in the statements of these assertions — cf. also the various related observations of Remarks 3.11.1, 3.11.2, 3.11.3, 3.11.4 below. QED P173 Corollary 3.12. (Log-volume Estimates for Θ-Pilot Objects) Suppose that we are in the situation of Theorem 3.11. Write P174 Proof. We begin by observing that, since |log(q)| > 0, P186 This indeterminacy has the effect of rendering meaningless any attempt to perform a precise log-volume computation as in (xi).QED (引用終り) 以上
>you are presented with some extremely difficult notion of a Hodge theater, together with a highly non-obvious notion of isomorphisms of such:
この文で難しいと述べたあとに、コロンで続けて難しい理由を説明している コロンの少し後の文を抜粋して
>So I find it very hard to “guess” what something like a surrounding “theory” might be. For all I can see, Hodge theaters fit neither into the framework of “structures” as used in the wikipedia entry https://en.wikipedia...ation_(model_theory) you linked to, nor the topos-theoretic framework of Caramello.
https://twitter.com/math_jin math_jin 1時間 【速報 2021.3.5】 欧州数学会出版からIUT論文掲載の学術誌が発行されました。(電子版) PRIMS Volume 57, Issue 1/2, 2021 Special issue "INTER-UNIVERSAL TEICHMÜLLER THEORY I.-IV." 21分 Prefaceが興味深い。#IUTABC https://ems-ph.org/journals/show_issue.php?issn=0034-5318&vol=57&iss=1 Preface to the Special Issue It is our great pleasure to publish a special issue of Publications of the Research Institute for Mathematical Sciences (PRIMS) for Inter-universal Teichm¨uller Theory, I–IV by Shinichi Mochizuki. https://pbs.twimg.com/media/EvrPbU3VcAMv-lD?format=jpg&name=900x900
https://www.ems-ph.org/journals/show_issue.php?issn=0034-5318&vol=57&iss=1 ems-ph.org PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES Volume 57, Issue 1/2, 2021 Special Issue Preface to the Special Issue IUT I〜IV (deleted an unsolicited ad)
https://pbs.twimg.com/media/EvrPbU3VcAMv-lD?format=jpg Preface to the Special Issue It is our great pleasure to publish a special issue of Publications of the Research Institute for Mathematical Sciences (PRIMS) for Inter-universal Teichm¨uller Theory, I–IV by Shinichi Mochizuki.
www.kurims.kyoto-u.ac.jp/~motizuki/papers-japanese.html 望月氏 論文サイト 宇宙際Teichmuller理論 [1] Inter-universal Teichmuller Theory I: Construction of Hodge Theaters. PDF NEW !! (2020-05-18) [2] Inter-universal Teichmuller Theory II: Hodge-Arakelov-theoretic Evaluation. PDF NEW !! (2020-12-23) [3] Inter-universal Teichmuller Theory III: Canonical Splittings of the Log-theta-lattice. PDF NEW !! (2020-05-18) [4] Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations. PDF NEW !! (2020-04-22)
https://sportiva.shueisha.co.jp/clm/othersports/swim/2019/05/01/___split_1/ web Sportiva 2019.05.01 北島康介の名言「ちょー気持ちいい」が 生まれたアテネ五輪の舞台裏 折山淑美●取材・文 text by Oriyama Toshimi 2004年アテネ五輪の100m平泳ぎで優勝した北島康介――。彼が、テレビカメラの前で発した第一声は「ちょー気持ちいい」というセリフだった。