[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 16:57 / Filesize : 444 KB / Number-of Response : 1070
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

Inter-universal geometry と ABC予想 (応援スレ) 52



331 名前:132人目の素数さん [2021/02/27(土) 12:51:48.66 ID:f+hU2HEr.net]
>>301
>the Legendre form
>ここらが重要キーワードですね

参考
https://en.wikipedia.org/wiki/Legendre_form
Legendre form

Contents
1 Definition
2 Numerical evaluation
3 References

The respective complete elliptic integrals are obtained by setting the amplitude, Φ, the upper limit of the integrals, to π/2.

The Legendre form of an elliptic curve is given by
y2 = x(x-1)(x-λ)

Numerical evaluation
The classic method of evaluation is by means of Landen's transformations. Descending Landen transformation decreases the modulus k k towards zero, while increasing the amplitude Φ. Conversely, ascending transformation increases the modulus towards unity, while decreasing the amplitude. In either limit of k, zero or one, the integral is readily evaluated.

Most modern authors recommend evaluation in terms of the Carlson symmetric forms, for which there exist efficient, robust and relatively simple algorithms. This approach has been adopted by Boost C++ Libraries, GNU Scientific Library and Numerical Recipes.[3]






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<444KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef