[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/10 19:48 / Filesize : 593 KB / Number-of Response : 1078
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

純粋・応用数学(含むガロア理論)6



976 名前:現代数学の系譜 雑談 [2021/04/14(水) 20:37:34.32 ID:xXqRObsR.net]
>>885 >>879 補足
(>>830より、おサル)
「公理的集合論では{}は存在します。0を{}と定義すれば0は存在します。
どうです?数は集合でしょ?」
(引用終り)

おサルは、これを”例示”だから良いという(>>821より)
じゃ、「”例示”だから良い」を潰しますw(^^
これ、数学以外では可でも、数学では不可だね

例えば
「公理的集合論では、数は集合です。
 例えば、空集合{}は公理としてその存在規定されます。
 0を{}と定義すれば0は存在します。
 後は、後者関数を使って、自然数を規定すれば、ペアノ公理により、全ての自然数は集合です。
 自然数から、整数、有理数、実数など、全ての数を集合として表すことができます。
 公理的集合論では、数以外にも、関数など20世紀初頭まで知られていた全ての数学的な要素を、集合として表すことができる」
とまあ、こんなことを書けば、OKでしょう

がしかし、「例示→(定理などの)命題」という語順は、御法度(ごはっと)です
小数の例でもって、(定理などの)命題 が導けるような論法は、数学では通用しません(数学以外ではありかも)

しかも、数”0”は非常に特殊な例なので、これを使って(定理)命題「公理的集合論では、数は集合」は導けない
せめて、もっと一般の自然数”n”が、集合であることを例示するならば、ともかくも

「公理的集合論では{}は存在します。0を{}と定義すれば0は存在します。
どうです?数は集合でしょ?」
か。こんな幼稚な文を書いているようじゃ
高等数学は無理ですな、おサルさん






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<593KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef