1 名前:132人目の素数さん [2020/05/18(月) 23:25:16.78 ID:GetP2MDS.net] さあ、今日も1日がんばろう★☆ 前スレ 分からない問題はここに書いてね459 https://rio2016.5ch.net/test/read.cgi/math/1585492157/ (使用済です: 478)
952 名前:132人目の素数さん mailto:sage [2020/07/06(月) 18:16:54.23 ID:cE8uMBSB.net] >>904 (1) 積→和の公式を用いてから微分し始めるとよい (2) {e^(3x)-e^(-x)}/2 の形から微分していけばよい。
953 名前:132人目の素数さん mailto:sage [2020/07/06(月) 18:55:05.17 ID:zrqa/esz.net] (無限)連分数ですべての実数が表記できるというのは、証明は簡単ですか?
954 名前:132人目の素数さん mailto:sage [2020/07/06(月) 21:00:06.32 ID:uITHUiBq.net] >>910 ググれば出てくるし初等的だけど簡単ではないかも 大体こんな感じか [ ] をガウス記号とする。 実数 x に対し、 x の連分数 α を以下の「操作」によって再帰的に定める。 操作 a_0 := [x] とする。 x - a_0 = 0 ならば、 α := a_0 として操作を終える。 x - a_0 ≠ 0 ならば、 b_1 := 1/(x - a_0) として、 a_1 := [b_1] とし、操作 A(1) を実行する。 ここで、操作 A(n) は以下のように再帰的に定める。 操作 A(n) b_n - a_n = 0 ならば、 α := a_0 + (1/(a_1 + (1/(a_2 + ( … (1/a_n)))))) として操作を終える。 b_n - a_n ≠ 0 ならば、 b_{n+1} := 1/(b_n - a_n) として、 a_{n+1} := [b_{n+1}] とし、操作 A(n+1) を実行する。 以上の操作が有限回で終わるとき、 α は有限連分数であると言う。 そうでないとき、 α は無限連分数であると言い、 α := lim[n→∞] a_0 + (1/(a_1 + (1/(a_2 + ( … (1/a_n)))))) とする。 【定理】全ての実数 x に対し、 x の連分数 α が存在して、 α = x が成り立つ。 (証明の方針) (1) x が有理数のとき、 α は有限連分数となることを示し、実際に α = x となることを示す。 (2) x が無理数のとき、 α は無限連分数となることを示し、極限値 α は収束して α = x が成り立つことを示す。
955 名前:132人目の素数さん mailto:sage [2020/07/06(月) 22:07:54.10 ID:fgaeIocv.net] πだとこんな感じ > pi [1] 3.1415926535897931 > 3+1/(7+1/(15+1/(1+ + 1/(292+1/(1+1/(1+1/(1+1/(2+ + 1/(1+1/(3+1/(1+1/(14+1/(3 + +1/(3+1/(23+1/(1+1/(1+ + 1/(7+1/(4+1/(35+ + 1/(1+1/(1+1/(1+1/2))))))))))))))))))))))) [1] 3.1415926535897931
956 名前:132人目の素数さん mailto:sage [2020/07/07(火) 00:30:06.00 ID:yBUx0unO.net] 手間はかかるけど証明は自明に近いな
957 名前:132人目の素数さん mailto:sage [2020/07/07(火) 00:37:20.29 ID:gyGhnLCq.net] 2.34567=2+(3+(4+(5+(6+7/10)/10)/10)/10) みたいな要領で無限小数を無限連分数に表していくのは簡単なんだけど、普通はこの形を連分数とは言わないからなぁ… 分子が全部1で分母の方に連なっていく形の連分数で表そうとすると、それなりに手間がかかるのか。
958 名前:132人目の素数さん mailto:sage [2020/07/07(火) 01:03:12 ID:UC0vv9cS.net] Farey数列がらみの話ですな。
959 名前:132人目の素数さん mailto:sage [2020/07/07(火) 01:31:23.54 ID:DRPGbRnk.net] f(x)は[0,∞)で定義された実数xについての関数で、少なくとも1回は微分可能な関数とする。 g(a,x)は[0,∞)で定義された実数aおよびxについての関数で、aでもxでも少なくとも1回は微分可能な関数とする。 I(a) = ∫[0,∞] g(a,x)/f(x) dx とするとき、I(a)が連続でないようなf(x)およびg(a,x)の例を1つ挙げよ。
960 名前:132人目の素数さん mailto:sage [2020/07/07(火) 01:41:26 ID:UC0vv9cS.net] f(x)=exp(2πix) g(a,x)=1/(1/4+a^2)sinc(x/(1/4+a^2))
961 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/07/07(火) 02:08:51 ID:BoTxtUvK.net] 前>>895 >>865 (2) ヒットエンドラン♪ 長さ√2/3 傾き(0,1,1) GHの単位ベクトルは(1/√2)(0,1,1) 体積の微分かな?
962 名前:132人目の素数さん mailto:sage [2020/07/07(火) 04:45:31 ID:LT2FasoV.net] 多様体をユークリッド空間に埋め込んで議論している本は 杉浦 解析入門2 ミルナー 微分トポロジー講義 ギルマン、ポラック 微分位相幾何 以外にありますか?
963 名前:132人目の素数さん mailto:sage [2020/07/07(火) 05:06:33 ID:8QVuUDNk.net] >>903 ワイの>>893 の説明が一番わかり易いから 他は無視してええぞ。 三角定規を置いて、それを山に見立てる。 左側の斜面の長さを x km、 右側の斜面の長さを y km として考えたら、一目瞭然。
964 名前:132人目の素数さん [2020/07/07(火) 06:09:38 ID:8QVuUDNk.net] ゲームの課金ガチャを引いて、 だいたい、どういう中身が出てくるのかを おおざっぱに紹介する動画を作ろうと思った。 しかし、何個くらい引くのがいいのか分からん。 で、それを一般化すると 以下のような問題に落とし込めたので どなたかお願いします。その数だけのガチャを引いて紹介動画にします。 ・問1.1 全5色のいずれかの色のついた球が 入った巨大な袋がある。 (袋は巨大であり、大量の数の球が入っている) その5色が何色かは分からない。 ( e.g. 例えば、 {赤、青、緑、紫, 水色} かもしれない) 「袋から球を1つ取り出し、その色を記録し、球を破壊する。 これを繰り返す」 全5色のうち、4色が判明したら終了とする。 4色が分かるまでに、何回の操作が必要か? (または、何回の操作が必要だと見積もられるか?) ・問1.2 色の数を全100色にして、 100色のうち80色が判明するまで続ける。 その場合は、何回の操作が必要か? (メモ。 80色が必要なので最低でも80回以上なのは分かるんですが…)
965 名前:132人目の素数さん mailto:sage [2020/07/07(火) 06:14:50 ID:UC0vv9cS.net] 5/5+5/4+5/3+5/4 100/100+100/99+‥+100/21
966 名前:132人目の素数さん mailto:sage [2020/07/07(火) 07:54:42.82 ID:yR/EvhWJ.net] >>921 5色がどういう割合で入っているのかわかっていないなら計算出来ないと思う
967 名前:132人目の素数さん [2020/07/07(火) 08:01:20.77 ID:xPi9MVYZ.net] 答えを教えて欲しいです。 1.正常な硬貨を無造作に投げることを2000回続けたとき,表の出る回数の期待度数は1000であることは自明である.それでは,表の出る回数がそこから60回以上ずれる確率を求めよ.なお2項分布の正規分布近似とカイ二乗分布を使う 2.平均がμ=22.0, 分散が未知の正規母集団から大きさ5の標本の特性Xの値が 24.3 18.9 23.7 23.0 17.4 であった (i) このとき, 不偏分散U2を求めよ. (ii) F が講義資料第8回目(p.8) の式としたときFの実現値F0を求めよ. さらに,確率Pr {F >F0}を求めよ.
968 名前:132人目の素数さん mailto:sage [2020/07/07(火) 08:06:22.24 ID:hqf5T3vF.net] >>924 >F が講義資料第8回目(p.8) の式としたとき 考える気失せる
969 名前:132人目の素数さん [2020/07/07(火) 08:11:12.21 ID:xPi9MVYZ.net] >>925 すみません。 2の問題は無視して下さい。
970 名前:132人目の素数さん [2020/07/07(火) 08:19:21.62 ID:8QVuUDNk.net] >>923 完全にランダムであり、同じ確率です。 割合に関しては、各色はいずれも とても大量の個数が、 同じ割合で偏りなく入っています。 大量の個数なので1万や1億個の球は誤差とします、 よって、袋の中の各色の割合は1億個取り出したとしても、 変わらないものとします。 ひょっとして、条件が不足しているのかな。 もしも条件が必要ならば、 「統計的に95%以上の確率で5色のうち4色を出すには、何回の操作が…」 と読み替えてください。
971 名前:132人目の素数さん [2020/07/07(火) 08:20:39.38 ID:8QVuUDNk.net] >>923 >>927 の条件をつければ 計算できると思います。
972 名前:132人目の素数さん mailto:sage [2020/07/07(火) 08:22:01.48 ID:UFb6e8CE.net] >>924 バカだろw
973 名前:チえろ [] [ここ壊れてます]
974 名前:132人目の素数さん mailto:sage [2020/07/07(火) 09:07:28 ID:yR/EvhWJ.net] クーポンコレクターの亜種か
975 名前:132人目の素数さん [2020/07/07(火) 10:37:19 ID:BqvccBWc.net] まぢ意味不 1.10個の球が袋に入っている。このうち3個が赤である。袋から1個取り出したらまた戻す。初めて赤球を取り出すまでにかかった回数をXとする。 (1)P(X=4)を求めよ (2)確率変数Xの平均を求めよ。(公式を使う) 2.10個の球が袋に入っている。このうち6個が赤である。袋から一度に5個取り出したときの赤球の個数をXとする。Xの確率分布表を書きなさい。(例3のようにX=kのとりうる範囲に注意)
976 名前:132人目の素数さん mailto:sage [2020/07/07(火) 11:07:50 ID:gyGhnLCq.net] >>931 1.(1) 1~3回目が赤以外かつ4回目が赤。(7/10)^3*(3/10) 1.(2) 使うべき公式とやらが書いてないので、どんな解答を要求されているのかわかりません。 2.P(X=k)=6Ck*4C(5-k)/10C5 で k=0~5 でかけばよい。
977 名前:イナ mailto:sage [2020/07/07(火) 11:39:31.32 ID:BoTxtUvK.net] 前>>918 >>921 七夕🎋なんで五色といえば、 赤、白、黄色、青が緑、黒か紫の5つ。 期待値の問題じゃないかな。 五色の玉が1/5ずつ袋に入っているとして1回目なにを引こうが1色わかる。 2回目2色目がわかる確率は4/5 3回目3色目がわかる確率の3/5と、 4回目4色目がわかる確率の2/5をかければどうだ。 4×3×2/5^3=24/125 2割弱か。そんなもんだろ。
978 名前:132人目の素数さん [2020/07/07(火) 11:42:01.50 ID:8QVuUDNk.net] >>933 計算機、スプレッドシートで手計算してみる!
979 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/07/07(火) 12:09:13 ID:BoTxtUvK.net] 前>>933 >>921 4(24/125)+5(24/125)(1/5+2/5+3/5)+6(24/125)(…… 7ぐらいまでやればわかるかも。
980 名前:132人目の素数さん mailto:sage [2020/07/07(火) 12:14:22 ID:LSsU1iyt.net] 期待値なら即答されてる
981 名前:132人目の素数さん [2020/07/07(火) 12:16:41 ID:8QVuUDNk.net] アカン、スプレッドシート?が アホすぎて計算ができひん。 動作の軽いプログラミング言語を使った 再帰関数が必要だわ、書ける人は >>921 を100色でやってみてほしい。 i 回の繰り返しで、 100色のうち、80色目の色が揃ったら停止させる。 i が いくらの時に80色目が出たか。 そのスクリプトを10周くらい回して、その平均値を教えてクレメンザ。
982 名前:132人目の素数さん [2020/07/07(火) 12:28:25 ID:8QVuUDNk.net] >>922 が答えなの? ありがとうございます! 計算してみました。 式 100/100+100/99+‥+100/21 = 80個の総和 = 1 + 1.01 + 1.02 + ... = 158.9.... ≒ 159 つまり、159回 やったら100色のうち、80色は 確率的には判明するんですね。 ありがとうございます。 ガチャを159回やります。
983 名前:132人目の素数さん mailto:sage [2020/07/07(火) 12:34:24 ID:LSsU1iyt.net] いや、だから期待値なら>>922 が即答してるよ 期待値の計算を書き込もうと思ってスレ見てみたらすでに書かれてた 確率pで起きることは何回の試行で起きるかという期待値は1/pで与えられる 5色の場合、 1色目は何色でもいいので確率1だから1回で出る 2色目は残りの4色どれかが出る確率が4/5だから5/4回、3色目は5/3回、4色目は5/2回 合わせて1+5/4+5/3+5/2=77/12 5色全部出るまでの期待値はさらに5回
984 名前:132人目の素数さん [2020/07/07(火) 12:56:15 ID:8QVuUDNk.net] >>922 >>939 サンクス!! ・5色のうちの4色 6.4 回 ・10色のうちの8色 14 回 ・50色のうちの40色 79 回 ・100色のうちの80色 159回 ・500色のうちの400色 803回 8割の色を出すには、色数 x 1.61 個 ほど 引けばいいようです。
985 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/07/07(火) 12:59:13 ID:BoTxtUvK.net] 前>>935 7回。
986 名前:132人目の素数さん mailto:sage [2020/07/07(火) 13:07:49 ID:bx7umG9D.net] >>921 シミュレーションしてみた。 > sim <- function(n=5,m=4){ # n色のうちm色判明
987 名前:ナ終了 + record=NULL # 記録された色 + color=0 # 記録された色の種類 + count=0 # 試行回数 + while(color!=m){ # m色記録されないなら + count=count+1 # 1個取り出して + record=unique(append(record,sample(n,1))) # 記録に追加して重複抹消 + color=length(record) # 記録された色の種類 + } + return(count) # 試行回数を返す + } > > mean(replicate(1e6,sim())) # 百万回繰り返して平均を求める [1] 6.414439 > [] [ここ壊れてます]
988 名前:132人目の素数さん mailto:sage [2020/07/07(火) 13:12:25 ID:bx7umG9D.net] >>924 1. 単に足し算して求めた > sum(dbinom(c(0:(1000-60),1060:2000),2000,0.5)) [1] 0.0077771189019787117
989 名前:132人目の素数さん mailto:sage [2020/07/07(火) 13:26:21 ID:bx7umG9D.net] >>924 正規分布近似 > n=2000 > p=0.5 > mu=n*p > sd=sqrt(n*p*(1-p)) > pnorm(1000-60,mu,sd)+pnorm(1000+60,mu,sd,lower=FALSE) [1] 0.0072903580915356404 カイ二乗分布を使うという記述の意味がわからん。
990 名前:132人目の素数さん mailto:sage [2020/07/07(火) 13:31:59 ID:bx7umG9D.net] >>937 > mean(replicate(1e4,sim(100,80))) # 1万回繰り返して平均を求める [1] 158.953
991 名前:132人目の素数さん mailto:sage [2020/07/07(火) 13:36:00 ID:bx7umG9D.net] >>945 > n=21:100 > sum(100/n) [1] 158.963786 わりといい線いっている。
992 名前:132人目の素数さん mailto:sage [2020/07/07(火) 14:06:09.05 ID:bx7umG9D.net] >>931 (1) 幾何分布なのでdgeo(4-1,3/10) (2) p=3/10 で期待値の公式は1/p=10/3 (3)超幾何分布なので > data.frame(X=0:5,Pr=dhyper(0:5,6,4,5)) X Pr 1 0 0.00000000000 2 1 0.02380952381 3 2 0.23809523810 4 3 0.47619047619 5 4 0.23809523810 6 5 0.02380952381
993 名前:132人目の素数さん mailto:sage [2020/07/07(火) 14:26:47 ID:bx7umG9D.net] >>931 百万回のシミュレーション解 bag=rep(1:0,c(3,7)) sim <- function(){ ball=0 count=0 while(ball==0){ count=count+1 ball=sample(bag,1) } return(count) } re=replicate(1e6,sim()) > mean(re==4) # (1) [1] 0.102998 > mean(re) # (2) [1] 3.338686
994 名前:132人目の素数さん mailto:sage [2020/07/07(火) 14:35:25 ID:bx7umG9D.net] >>931 2.のシミュレーション解 bag=rep(1:0,c(6,4)) sim <- function(x) sum(sample(bag,5)) re=replicate(1e6,sim()) table(re)/1e6 1 2 3 4 5 0.024026 0.237994 0.476124 0.238167 0.023689
995 名前:132人目の素数さん mailto:sage [2020/07/07(火) 15:40:26 ID:8QVuUDNk.net] >>941-946 みなさん、ありがとうございます。 数行でかけるんですね。 こっちは スプレッドシートを500行 並べて 総和 SUM(A:B) と 総乗 PRODUCT(A:B) して >>940 の値を求めた。 1.61 ? くらいに漸近するような感じ
996 名前:132人目の素数さん mailto:sage [2020/07/07(火) 15:43:24 ID:8QVuUDNk.net] >>950 1.6 あたりに漸近するんだけどさ。 ln (e !) x (a/b) ! = 1.63789 に近づいていくのかな。
997 名前:132人目の素数さん mailto:sage [2020/07/07(火) 15:51:31 ID:8QVuUDNk.net] >>921 の問題 >>922 が一瞬で答えてくれた。 色の数n を増やして 実際に計算してみると >>940 のように おおむね 1.6+ あたりへ 漸近していくのが見て取れる 5色のうち4色 → 10億色のうち8億色と 色数を大きくしていくと ln (e!) x (a/b) ! = 1.63789...... に漸近するんかな?
998 名前:132人目の素数さん mailto:sage [2020/07/07(火) 15:56:43.91 ID:8QVuUDNk.net] >>942 すんません。 もっと大きな数 10億色のうち8億色 とか 10兆色のうち8兆色で 計算していただけませんか! おそらく、 10兆 x 1.63789 回になる
999 名前:132人目の素数さん [2020/07/07(火) 16:04:51.88 ID:8QVuUDNk.net] ln (e!) x (a/b) ! ↑ 根拠はないけど、 電卓いじってたらこの数式が頭に浮かんだ。 全a色の球が入った巨大な袋から、 取り出して色を記録していって、b色が判明するのに必要な 試行回数の期待値。 a(およびb)が 非常に大きい整数であれば、 a x {ln (e!) x (a/b) !} 回
1000 名前:フような気がする。 [] [ここ壊れてます]
1001 名前:A欄既卒 [2020/07/07(火) 16:20:10.61 ID:8QVuUDNk.net] 大学で 「確率」とか「解析学」を 履修した理系の人たち、いませんか? >>921 → >>922 で問題は解けて納得したけどさ。 >>940 から俺が閃いた 漸近する値 についてのナゾの式 (>>951 および >>952 ) の内容は正しいのか? 間違っているなら、「漸近する値が間違っているぞ」 という反例を挙げて欲しい。 10兆色のうちの8兆色 とかで計算してさ。
1002 名前:132人目の素数さん mailto:sage [2020/07/07(火) 16:43:48 ID:bx7umG9D.net] >>940 1000色までやってみた。 https://i.imgur.com/CSDDMr0.png 線形回帰で係数をもとめたら 1.609356 > # n種類のガチャからm種類を集めるまでの期待値 > collector <- function(n=100,m=80,print=TRUE){ + library(gmp) + x=(n-m+1):n + x=as.bigq(x) + y=sum(n/x) + if(print) print(y) + return(asNumeric(y)) + } > collector(5,4) Big Rational ('bigq') : [1] 77/12 [1] 6.416666667 > collector(100,80) Big Rational ('bigq') : [1] 10075468010284923492783367185945796008025/63382159299738615604121644486647548688 [1] 158.963786 > n=1:1000 > r=0.8 > y=sapply(n,function(x)collector(x,round(r*x),print=F)) > plot(n,y,bty='l',col='gray') > lm=lm(y~n) ; lm Call: lm(formula = y ~ n) Coefficients: (Intercept) n -1.941193 1.609356
1003 名前:132人目の素数さん mailto:sage [2020/07/07(火) 17:11:00 ID:bx7umG9D.net] >>955 10億色のうち8億色でやってみた > collector(1e9,8e8,F) [1] 1609437910 1兆でやろうと思ったら > collector(1e12,8e11,F) Error: cannot allocate vector of size 5960.5 Gb と怒られたw
1004 名前:132人目の素数さん mailto:sage [2020/07/07(火) 17:22:49 ID:wjRMaac8.net] 内田伏一の集合と位相の問題8.7が分かりません。集合Eの巾集合をXとする。写像φ:X->Xが包含関係による順序を保つ写像であれば、Eの部分集合E_0でφ(E_0)=E_0となるものが必ず存在することを示せ。
1005 名前:132人目の素数さん mailto:sage [2020/07/07(火) 17:24:30 ID:wjRMaac8.net] E_0をφ(A)⊂Aとなるような全集合の共通部分とします。するとφ(E_0)⊂E_0が成り立つことまでは分かりました。等号が成り立つのはなぜですか?
1006 名前:132人目の素数さん mailto:sage [2020/07/07(火) 17:43:00 ID:xkZAJeQx.net] φ(A)⊂Aなら φ(φ(A))⊂φ(A) となりφ(A)も方程式φ(X)⊂Xを満たす集合。 しかしE_0はかな方程式を満たす最小集合
1007 名前:132人目の素数さん mailto:sage [2020/07/07(火) 17:53:41 ID:wjRMaac8.net] ありがとうございました。
1008 名前:132人目の素数さん mailto:sage [2020/07/07(火) 19:09:06.17 ID:7vxztQCR.net] >>808 の計算 正n角形Sの頂点を S_k(cos(2kπ/n), sin(2kπ/n)) 正(n+2)角形Tの頂点を T_k(cos(2kπ/(n+2)), sin(2kπ/(n+2))) とおく。 辺S_{k-1}S_k と 辺T_{k-1}T_k の交点をU 辺S_{k-1}S_k と 辺T_k T_{k+1} の交点をV とおく。 Uは辺T_{k-1}T_k 上にある。 ↑u = (1-L)↑t_k + L ↑t_{k-1}, Vは辺T_k T_{k+1}上にある。 ↑v = (1-m)↑t_k + m ↑t_{k+1}, U,Vは辺S_{k-1}S_k にある: ↑u・↑s_{k-1/2} = ↑v・↑s_{k-1/2} = cos(π/n), ここに ↑s_{k-1/2} = (↑s_{k-1} + ↑s_k)/(2cos(π/n)), これを解いて L = {cos(π/n) - cos(2kπ/(n+2)-(2k-1)π/n)} / {cos(2(k-1)π/(n+2)-(2k-1)π/n) - cos(2kπ/(n+2)-(2k-1)π/n)}, m = {cos(π/n) - cos(2kπ/(n+2)-(2k-1)π/n)} / {cos(2(k+1)π/(n+2)-(2k-1)π/n) - cos(2kπ/(n+2)-(2k-1)π/n)}, △(U T_k V) = (1/2)UT_k・VT_k sin(∠UT_kV) = L m * (1/2)T_{k-1}T_k・T_kT_{k+1} sin(∠T_{k-1} T_k T_{k+1}) = L m *△(T_{k-1} T_k T_{k+1}), ここで T_{k-1}T_k = T_k T_{k+1} = 2sin(π/(n+2)), ∠(T_{k-1} T_k T_{k+1}) = π - 2π/(n+2), より △(T_{k-1} T_k T_{k+1}) = 2{sin(π/(n+2))}^2 sin(2π/(n+2)),
1009 名前:132人目の素数さん mailto:sage [2020/07/07(火) 19:12:12.43 ID:7vxztQCR.net] >>808 ただし k=(n+1)/2 のときは 台形(trapezoid) = h {2sin(π/(n+2)) + h/tan(2π/(n+2))}, h = cos(π/(n+2)) - cos(π/n),
1010 名前:132人目の素数さん mailto:sage [2020/07/07(火) 19:50:07.32 ID:xkZAJeQx.net] p(a,b) =Σa/(a-k) ≒∫[0,b]1/(1-x/a)dx =-alog(1-b/a) だから b=[4a/5] でa→∞のとき lim p(a,b)/a = -log(1/5) = log(5) かな
1011 名前:132人目の素数さん mailto:sage [2020/07/07(火) 19:59:46.44 ID:V0zbgviH.net] 鳩の巣原理という超自明なものから証明される命題が超自明に見えないのはなぜ??
1012 名前:132人目の素数さん mailto:sage [2020/07/07(火) 20:31:00.79 ID:bx7umG9D.net] >>965 昭和のうちは、部屋割り論法という呼称だったけどいつから鳩の巣原理に呼称が変わったんだろう? 次はどんな呼称に変わるのだろうなぁ?
1013 名前:132人目の素数さん mailto:sage [2020/07/07(火) 21:17:50.33 ID:YXX3xhBe.net] 放物線C上を点Pが、D上を点Qが、それぞれ独立に動く。 C:y=x^2+1 D:x=2y^2+2 このときPQの長さを最小とするようなP,Qの位置を述べよ。 …というような問題で、よくなんの断りもなしに 「PQが最小だから、PでのCの接線とQでのDの接線が平行でなければならない」…(A) と書いているのを見かけます。 チャート式などの受験参考書に見られます。 (A)は前置きもなしに自明と扱って良いのでしょうか?よろしくお願いします。
1014 名前:132人目の素数さん mailto:sage [2020/07/07(火) 23:27:30.77 ID:gyGhnLCq.net] >>967 このくらいなら出題者・採点者の方針次第のように思う。 論証不足として減点されても文句は言えないレベルだが、大目に見て減点なしとする採点基準の場合もあるだろうな。 自明として扱わずにきちんと論証しておいたほうが無難だとは思う。 受験参考書とのことなので大学受験あたりの話なのかと思うが、主要な大学ほどこういう微妙な判断を要する出題は避ける傾向はあるかもしれない。 ほんの些細なことでも各種予備校からのクレームは厳しいからな。 いずれにせよ、数学の学習において本に自明と書いてあることを自力できちんと論証できるようにしておくことはとても大切である。
1015 名前:132人目の素数さん mailto:sage [2020/07/07(火) 23:27:49.04 ID:UGF9ZM36.net] 分からない問題はここに書いてね461 https://rio2016.5ch.net/test/read.cgi/math/1594131967/
1016 名前:132人目の素数さん mailto:sage [2020/07/08(水) 01:39:18.47 ID:E7sQrDhL.net] >>962-963 n 面積 ----------------------- 3 1.113653769170520 5 0.397944967183052 7 0.187485749191523 9 0.105399738651839 11 0.066428110136527 13 0.045288462094167 15 0.032681482667606 31 0.006502342848450 63 0.001434131704510 127 0.000336211588037 255 0.000081395165854 n>>1 では 〜 5/n^2
1017 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/07/08(水) 03:28:31 ID:ODJ2yoWq.net] 前>>941 >>967 C:y=x^2+1 D:x=2y^2+2 y=x^2+1のP(p,p^2+1)における接線をy=2x+aとおくと、 2p+a=p^2+1 p^2-2p-a+1=0が重解を持つためにa=0,p=1 P(1,2)が判明。 PQの式はy=-(1/2)(x-1)+2 x=2y^2+2 =1-2y+2 =3-2y =3-(
1018 名前:3-1) =2-√3 Q(2-√3,(√3-1)/2)が判明。 [] [ここ壊れてます]
1019 名前:132人目の素数さん [2020/07/08(水) 04:38:30.25 ID:wpJjzlbG.net] >>956-957 すいません、 私の思いつきは的外れでしたね、 失礼しました。
1020 名前:イナ mailto:sage [2020/07/08(水) 04:53:28.69 ID:CkzpZnuD.net] 前>>971 訂正。勇足おわび致す。かたじけない。 >>967 P(1/2,5/4) Q(5/4,1/2) ピタゴラスの定理より、 PQ=√(3/4)^2+(3/4)^2 =3√2/4
1021 名前:132人目の素数さん mailto:sage [2020/07/08(水) 07:34:45.40 ID:I3BoIViR.net] >>967 思考停止のプログラムでの数値解 > PQ <- function(xy){ + x=xy[1] + y=xy[2] + P=c(x,x^2+1) + Q=c(2*y^2+2,y) + sqrt(sum((P-Q)^2)) + } > > opt=optim(par=c(0,0),fn=PQ,method='Nelder') > x=opt$par[1] > (P=c(x,x^2+1)) [1] 0.6189828 1.3831398 > y=opt$par[2] > (Q=c(2*y^2+2,y)) [1] 2.0814249 0.2017733 > PQ(opt$par) [1] 1.87999
1022 名前:132人目の素数さん mailto:sage [2020/07/08(水) 08:08:33.01 ID:E7sQrDhL.net] >>966 ディリクレ(1805〜1859)の死後、明治〜大正時代は 「引きだし論法」だったかも。
1023 名前:132人目の素数さん mailto:sage [2020/07/08(水) 08:11:46.16 ID:I3BoIViR.net] >>974 図示しないと気持ちがわるいな。 https://i.imgur.com/Sf54r6U.png x=seq(-2,2,len=100) plot(x,x^2+1,xlim=c(-2,5),ylim=c(-2,5),type='l',bty='l',ann=F) y=seq(-2,2,len=100) lines(2*y^2+2,y) points(P[1],P[2],pch=19) points(Q[1],Q[2],pch=19)
1024 名前:132人目の素数さん mailto:sage [2020/07/08(水) 08:32:40 ID:0bsbQgCs.net] 正の実数xに対して{x}はxの小数部分を表す。aを正の無理数とする。 (1)n=1,2,...のそれぞれに対し、{na}はすべて異なることを示せ。 (2)(1)と同様にa*{na}を考えたとき、a*{ka}=a*{ma}となる相異なる自然数の組(k,m)が少なくとも1組存在する場合がある。aはどのような無理数か、考えうる全ての場合を求めよ。
1025 名前:132人目の素数さん [2020/07/08(水) 08:37:03.05 ID:wpJjzlbG.net] みんな頭いいな。 ここの方って中高生向けの数学オリンピックとその予選、 ああいう偏ったタイプの問題を解く自信はありますか? ああいうのって大学以上の数学とは別ものですよね? ちなみに、おれが学生の頃は 旧い練習問題のコピーがクラスで流行ってた。 1.5 問くらいしか解けんかったわ。 余裕で予選落ちだ。
1026 名前:132人目の素数さん mailto:sage [2020/07/08(水) 09:34:26.90 ID:wuJIFs5H.net] >>977 (1)異なる自然数k,mに対して{ka}={ma}と仮定すると ka-ma=(k-m)a が整数となるが、k-m≠0であるからこれはaが無理数であることに矛盾する。 (2)a*{ka}=a*{ma} ⇔ {ka}={ma} であるから(1)よりaがどのような無理数であってもこれを満たす相異なる自然数の組(k,m)は存在しない。
1027 名前:132人目の素数さん mailto:sage [2020/07/08(水) 10:16:11 ID:XD7Ql8W/.net] C,Dが交わらない微分可能な関数曲線として、 PQが最小値をとるとき、PでのCの接線とQでのDの接線は平行である ってどうやって証明できるんだろう?
1028 名前:132人目の素数さん mailto:sage [2020/07/08(水) 11:22:54.39 ID:wuJIFs5H.net] >>980 条件設定が不十分すぎますが、>>967 の話でしょうか? 動点の片方を固定したとき、固定されてないほうの接線がPQに垂直となることを示せば十分ですが 垂直でなければPQを半径とする円と交わるので円の内部の点を取れば最小ではなくなるくらいでよいのではないでしょうか。
1029 名前:132人目の素数さん mailto:sage [2020/07/08(水) 11:56:09.02 ID:M5YUn+y1.net] X,Yを全
1030 名前:順序集合とする。順序を保つ全単射f:X->Yが存在するとき、XとYは順序同型になるか? なりそうな気がしますがどうでしょうか? [] [ここ壊れてます]
1031 名前:132人目の素数さん mailto:sage [2020/07/08(水) 12:44:39 ID:AhepFBJk.net] 全順序なら自明じゃね f が順序を反映することが言えればいいんでしょ? 任意の x, y ∈ X に対して f (x) ≦ f (y) ならば、 X が全順序なら x ≧ y または x ≦ y だが、 もし x > y なら f が順序を保つことから f(x) ≧ f(y) となるので f(x) = f(y) これは f の単射性の仮定に矛盾する。
1032 名前:132人目の素数さん mailto:sage [2020/07/08(水) 12:56:11 ID:I3BoIViR.net] >>975 鳩の巣原理を知った、動物アイゴ主義者が鳩を1羽用の巣箱に押し込めるのは動物虐待といいだしそうw 引き出し論法というのはそういう非難がこないよい命名だな。
1033 名前:132人目の素数さん mailto:sage [2020/07/08(水) 12:58:19 ID:I3BoIViR.net] >>973 赤がイナ芸人の答 https://i.imgur.com/5eWWxGA.png
1034 名前:132人目の素数さん mailto:sage [2020/07/08(水) 13:10:57 ID:Pt4pRb+l.net] そういやDirichletのひきだし論法って言い方あるな。 どっかの文献でDirichletがひきだし使って説明したのかな?
1035 名前:132人目の素数さん mailto:sage [2020/07/08(水) 14:12:29.85 ID:wuJIFs5H.net] >>980 さすがに>>981 ではアバウトすぎた気がするので、もう少し丁寧に書いておく。 点Pは点Qを中心とした半径PQの円Oと曲線Cの共有点であるが、交点ではない(理由は後述)から接点である。 つまり点PにおけるCの接線は円Oの接線でもあるので、半径PQと垂直である。 同様に点QにおけるDの接線もPQに垂直であり、同一の直線PQに垂直な2直線は平行である。 (交点ではない理由) 円Oと曲線Cが点Pで交わると仮定すると、円Oの内部に曲線C上の点をとれることになるがこれはPQの最小性に矛盾する。
1036 名前:132人目の素数さん mailto:sage [2020/07/08(水) 14:45:28.68 ID:ljE/4Hhb.net] xy平面に3点O(0,0),A(a,0),B(-a,0)がある。 点P(p,q)が、q>0かつAP+BP=∠APB、を満たすように動く。 MPの最大値が存在するためのaの条件を求めよ。存在する場合にその最大値をaで表せ。 なお∠APBは△APBの内角であり、角の大きさは弧度法で測るものとする。
1037 名前:132人目の素数さん mailto:sage [2020/07/08(水) 15:06:41.16 ID:yiO6XJAl.net] lim [t→∞] )√(t^2+c^2)-atan(c/t)) = ∞ lim [t→+0] )√(t^2+c^2)-atan(c/t)) = -∞
1038 名前:132人目の素数さん mailto:sage [2020/07/08(水) 15:31:59.19 ID:yiO6XJAl.net] lim [t→+0] )√(t^2+c^2)-2atan(c/t)) = c - π (√(t^2+c^2)-2atan(c/t)) )' = (√(t^2+c^2)+2c)/(t^2+c^2)>0
1039 名前:イナ mailto:sage [2020/07/08(水) 16:30:51.37 ID:5WH5GGpe.net] 前>>973 訂正。 >>967 P(p,p^2+1) Q(2q^2+2,q) PQ^2=(2q^2+2-p)^2+(p^2+1-q)^2 =...... =(2q^2-p^2)^2...... p=q√2のときPQは最小。 PQ^2=8q^4-4(√2+1)q^3+15q^2-2(1+2√2)q+5=f(q)とおき、 f'(q)=32q^3-12(√2+1)q^2+30q-2(1+2√2)=0 この3次方程式が解ければP,Qの位置は決まると思う。 おおよそP(2/3,13/9),Q(22/9,√2/3)ら辺と考えられる。
1040 名前:132人目の素数さん mailto:sage [2020/07/08(水) 16:53:00.60 ID:wuJIFs5H.net] >>988 点Mを十分遠くにとればMPをいくらでも大きくできるのでMPの最大値は存在しない。
1041 名前:132人目の素数さん mailto:sage [2020/07/08(水) 18:16:48.79 ID:I3BoIViR.net] >>981 レスありがとうございました。 図示したらおっしゃることが理解できました。 https://i.imgur.com/b3RRYWW.png
1042 名前:132人目の素数さん mailto:sage [2020/07/08(水) 18:39:34.25 ID:I3BoIViR.net] >>991 32q^3-12(√2+1)q^2+30q-2(1+2√2)=0 をWolfram先生に解いてもらいました。 実数解は q ? 0.318819191675181 だそうです
1043 名前:132人目の素数さん mailto:sage [2020/07/08(水) 19:08:18.21 ID:NoIq/b5Q.net] MではなくOの間違いでした。ABの中点になっているからMだと勝手に思い込んでいまして、すみませんでした。 AP+BPはともかく、∠APBをどうやって
1044 名前:式にするかがわかりません。正弦定理を使ってsinの形にし微分計算に持ち込むことを考えましたが、大変煩雑でがうまくできません。 よろしくお願いします。 【修正】 xy平面に3点O(0,0),A(a,0),B(-a,0)がある。 点P(p,q)が、q>0かつAP+BP=∠APB、を満たすように動く。 OPの最大値が存在するためのaの条件を求めよ。存在する場合にその最大値をaで表せ。 なお∠APBは△APBの内角であり、角の大きさは弧度法で測るものとする。 [] [ここ壊れてます]
1045 名前:イナ ◆/7jUdUKiSM mailto:sage [2020/07/08(水) 20:01:55 ID:A4Rmkg0O.net] 前>>991 >>994 q=0.318819191675181として、 P(0.45087842481,1.2329135396) Q(2.20329135396,0.318819191675181) PQの傾きは-0.914094347924819/1.75241292905>-1/2
1046 名前:132人目の素数さん mailto:sage [2020/07/09(Thu) 01:42:21 ID:t0ZWB8zx.net] 一辺の長さが1の正四面体Vの重心をGとする。 また重心を含む平面で、Vとの共通部分が等脚台形となるものを考える。その2つの角をa,π-aとおく。 (1)実数aの取りうる値の範囲を求めよ。 (2)aの下限または最小値をm、上限または最大値をMとする。 平面とVとの共通部分の等脚台形について、その1つの角が(m+M)/2であるようなものの面積を求めよ。
1047 名前:132人目の素数さん mailto:sage [2020/07/09(Thu) 02:32:24 ID:XFAfLnLw.net] π/3<a<2π/3 1/4
1048 名前:132人目の素数さん mailto:sage [2020/07/09(Thu) 07:39:23 ID:dYeNIQef.net] >>996 最短じゃないみたいだよ。 > P=c(0.45087842481,1.2329135396) > Q=c(2.20329135396,0.318819191675181) > sqrt(sum((P-Q)^2)) [1] 1.976492 > (P=c(x,x^2+1)) [1] 0.6189828 1.3831398 > y=opt$par[2] > (Q=c(2*y^2+2,y)) [1] 2.0814249 0.2017733 > PQ(opt$par) [1] 1.87999
1049 名前:132人目の素数さん [2020/07/09(Thu) 08:04:04 ID:lBO5fTHS.net] 問 1. 定規とコンパスがある。 これで 単項式、かつ、nを含む三乗根の数 (3乗根√n など…) を作図できるだろうか? 出来るなら作図の仕方を説明せよ (出来ないならば、それを証明せよ) 問 2. 折り紙がある。 これで 単項式、かつ、nを含む三乗根の数 (3乗根√n など…) を作図できるだろうか? 出来るなら作図の仕方を説明せよ、 (出来ないならば、それを証明せよ)
1050 名前:1001 [Over 1000 Thread .net] このスレッドは1000を超えました。 新しいスレッドを立ててください。 life time: 51日 8時間 38分 48秒
1051 名前:過去ログ ★ [[過去ログ]] ■ このスレッドは過去ログ倉庫に格納されています