- 213 名前:132人目の素数さん mailto:sage [2020/05/30(土) 21:57:53.38 ID:S25iSUll.net]
- >>204
自明すぎて何を要求されてるのかわからんので、糞ほど丁寧に書いてみた。 書くの面倒だから f^-1=f~ と略記する。 また、計算の優先順位を表すカッコが関数の引数のカッコと紛らわしいので 計算の優先順位のカッコはすべて中カッコで書いておく。(本来はただのカッコ) 任意の x∈X について {{f~〇g~}〇{g〇f}}(x)={f~〇g~}({g〇f}(x))=f~(g~({g〇f}(x)))=f~(g~(g(f(x))))=f~(f(x))=x ∵f(x)∈Y であるからg~の定義から g~(g(f(x)))=f(x) , x∈X であるからf~の定義から f~(f(x))=x 任意の z∈Z について {{g〇f}〇{f~〇g~}}(z)={g〇f}({f~〇g~}(z))=g(f({f~〇g~}(x)))=g(f(f~(g~(z))))=g(g~(z))=z ∵g~(z)∈Y であるからf~の定義から f(f~(g~(z)))=g~(z) , z∈Z であるからg~の定義から g(g~(z))=z
|
|