- 700 名前:132人目の素数さん mailto:sage [2020/03/06(金) 23:02:31.70 ID:D66ej/ua.net]
- >>663
q>4を二冪として写像f:Fq\{0}→Fqをf(x)=x+1/xで定める。 S=im(f)\{0}の各元yについてf(x)=yを満たすFq\{0,1}の元xが2個ずつ存在するから 2#S=q-2 であり、#S=q/2-1<q-3であるからSにみF4「も属さないb∈Fqがとれる。 bのF2上の最小多項式をP(y)とする。 Q(x)=P(x+1/x)x^n (n=degP)とおく。 代数閉体Ωの元aをf(x)=bの解とすればaはQ(x)の根である。 ここで[Fq(a):F2]はqまたは2qであるからd=[F2(a):F2]は2q,q,2,1のいずれかである。 d=qとなるのは方程式F(x)=bがFqに解を持つ時であり、それはbの取り方に反する。 d=1,2となるときF2(b)⊂F2(a)最小⊂F4上となりやはりbの取り方に反する。 よってF2(a):F2]=2qとなりQ(x)はaの最小多項式であり既約である。 さらにQ(x)の根はP(x)の根βに対して方程式x+1/x=βの解をとるときの全体だから自己相反である。□
|

|