- 664 名前:132人目の素数さん mailto:sage [2020/03/03(火) 05:46:44.76 ID:KGTUQZbA.net]
- >>606
本問では △ABC の面積を f(C, B-A) とおくことが可能ですね。(何でもない事のようですが) >>609 から ∠Cを固定して ∠A, ∠B を変えたとき、 面積は、二等辺三角形(B-A=0)のときに最大である。 Max[x] f(C,x) = f(C,0) 次に ∠C を変えたとき、 面積は、B=C (=π/3) のときに最大である。(正三角形) Max[C] f(C,0) = f(π/3,0) これらより、最大値は Max[C,x] f(C,x) = f(π/3,0) つまり「正三角形で最大値をとる」という事が言えます。(キッパリ) 周囲の長さが一定とか、うまくパラメータ付けできない時には >>629 のようになりますが・・・・ >>623 も同様かと・・・・
|

|