- 39 名前:132人目の素数さん [2019/12/22(日) 08:47:36.23 ID:dWgKJ6XY.net]
- >>33
>∈-数列 >0∈1∈2∈3・・・∈n∈・・・→ω >("→ω"の意味は、ωに向けてずっと続くってことね) >(なお、ωは、超限順序数で、いわゆる”有限”ではない) →ω は必要ありません つまりωが存在しないとしても 0∈1∈2∈3・・・∈n∈・・・ は無限列です ><Neumann構成>では、後者関数の定義が、それ以前の全ての要素からなる集合だから これは嘘ですね Neumann構成の後者関数はx∪{x} つまり、xに自分自身を要素として追加した集合です 結果として自分より小さい順序数全てを要素とする集合になってるだけ ><Zermelo構成>においては、もともと、任意のm<nで、m∈n不成立 これも嘘ですね まず、自然数nの場合、n-1<nですが、n-1∈n Zermelo構成の後者関数x+1={x}から明らかですね >だから、もともと、”n not∈ω(=Ω)”なのです(nは、任意の自然数) これはいえませんね ωは極限順序数ですから、そもそも前者であるω-1が存在しません もし、自然数の場合と同様に 「前者以外の要素を持たない」 と言い切ってしまうと、そもそも前者が存在しない場合 「いかなる要素も持たない」 ということになり空集合になってしまいます 順序数として必要な性質 「ωから任意の自然数nへの有限∈降下列が存在する」 を満たしているならば 「いかなる自然数nについても n<m<ωかつm∈ωとなる 自然数mが存在する」 必要があります したがって ・ωは少なくとも無限個の自然数を要素として持つ ・要素中の最大値は存在しない という2つの性質を満たす必要があります したがってn ∈ωとなるnは無限個あります 上記の性質を満たすnの配置を いくらでも疎らにすることはできますが 有限個にはできません
|

|