[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 16:44 / Filesize : 600 KB / Number-of Response : 1089
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 カントル 超限集合論2



34 名前:現代数学の系譜 雑談 [2019/12/22(日) 08:06:52.76 ID:jNutOcAm.net]
>>24
>Ωが次の性質を持つ限りZFCと両立することはできません。
>・Fを
>x∈F⇔∃x1∋x2∋‥‥∋xn, x1=Ω, xn=x
>によって定められる集合とするときFの任意の要素はシングルトンか空集合。
>・Ωは有限Zermelo ordinal numberではない。

(前スレ>>961より)
https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%95%B0
自然数
(抜粋)
<ノイマン構成>
・任意の集合 a の後者は a と {a} の合併集合として定義される。
 suc (a):=a∪{a}
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
<Zermelo構成>(前スレ>>725より)
他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
(引用終り)

なので、<Zermelo構成>も<ノイマン構成>も
∈-数列
0∈1∈2∈3・・・∈n∈・・・→ω
("→ω"の意味は、ωに向けてずっと続くってことね)
(なお、ωは、超限順序数で、いわゆる”有限”ではない)

で、「0∈1∈2∈3・・・∈n∈・・・→ω」は、<Zermelo構成>も<ノイマン構成>も全く同じ
だから、この<Zermelo構成>を否定することはできません
(∵<Zermelo構成>を否定すると、<ノイマン構成>も同様に否定されるから)

但し、
<ノイマン構成>においては、ω=N(自然数の集合)なので
n∈ω(=N)は、可
というか
<ノイマン構成>なら、任意のm<nで、m∈n成立
(∵<ノイマン構成>では、後者関数の定義が、それ以前の全てを要素からなる集合だから(前スレ966))

一方、<Zermelo構成>においては、もともと、任意のm<nで、m∈n不成立
(∵<Zermelo構成>では、後者関数の定義が、異なるため)
だから、もともと、”n not∈ω(=x1=Ωかな)”なのです(nは、任意の自然数)
これは、後者関数の定義の問題なのです
(なので、<Zermelo構成>もZFC内で成立します)

つづく






[ 続きを読む ] / [ 携帯版 ]

全部読む 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<600KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef