[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 04/11 02:01 / Filesize : 718 KB / Number-of Response : 1095
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

現代数学の系譜 工学物理雑談 古典ガロア理論も読む77



211 名前:現代数学の系譜 雑談 古典ガロア理論も読む mailto:sage [2019/09/15(日) 08:12:51.73 ID:NNU+uf1a.net]
>>188 追加
(引用開始)
・⊂と∈とは、よく似ているってこと
・⊂と∈との違いは、∈は集合の元(要素)に適用されるが、⊂は広く集合の元(要素)以外にも適用されること
・ところが、公理的集合論では、元(要素)もまた集合なので、⊂と∈との敷居は素朴集合論より低いのです
・上記5)の「ノコギリ∈Z」のように考える方が、正解なのです
(引用終り)

別の例を挙げよう(最初は素朴集合論ベースとして)
1)自然数の集合N、偶数の集合N2、奇数の集合Nodd
2)集合N’={N2,Nodd} (偶数の集合と奇数の集合とを入れた集合)
 明らかに
 N = N2∪Nodd ≠ N’
3)ですが、集合N’とNは似ています
 例えば、s={2,4,6}という集合は、NとN’両方に含まれます(部分集合)
4)ですが、s’={2,3,5}は、Nには含まれますが、N’に含まれない
(∵ s’は偶数と奇数の混合で、偶数の集合と奇数の集合と、どちらにも含まれないので推移律不成立)
5)では、一元集合ではどうか?
 {2}は、NとN’両方に含まれます(両方の部分集合)
 {2}⊂N & {2}⊂N’
6)さて、2(元として)ならどうか?
 明らかに、2∈N
 しかし、2 not∈N’なのでしょうか?
 {2}⊂Nであるにも関わらず
7)素朴集合論では、些末なことなので、この程度のことはどうでも良い
 というか、適当で良い
 しかし、公理的集合論では、適当ではすまないのです
 2 ∈N’と考えるのが、一番すっきりしている
 2 ∈N2 かつ N2 ∈N’で、∈の推移律により、2 ∈N’と考えるべき
 (∵ >>164の 酒井拓史 神戸大の通り(>>188
 「基礎公理により,すべての集合X に対して・・、∈は・・整礎的な二項関係」)
QED






[ 続きを読む ] / [ 携帯版 ]

全部読む 前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´Д`)<718KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef