https://en.wikipedia.org/wiki/Urelement Urelement (抜粋) In set theory, a branch of mathematics, an urelement or ur-element (from the German prefix ur-, 'primordial') is an object that is not a set, but that may be an element of a set. Urelements are sometimes called "atoms" or "individuals."
Contents 1 Theory 2 Urelements in set theory 3 Quine atoms
Urelements in set theory The Zermelo set theory of 1908 included urelements, and hence is a version we now call ZFA or ZFCA (i.e. ZFA with axiom of choice).[1] It was soon realized that in the context of this and closely related axiomatic set theories, the urelements were not needed because they can easily be modeled in a set theory without urelements.[2] Thus, standard expositions of the canonical axiomatic set theories ZF and ZFC do not mention urelements. (For an exception, see Suppes.[3]) Axiomatizations of set theory that do invoke urelements include Kripke?Platek set theory with urelements, and the variant of Von Neumann?Bernays?Godel set theory described by Mendelson.[4] In type theory, an object of type 0 can be called an urelement; hence the name "atom."