[表示 : 全て 最新50 1-99 101- 201- 301- 401- 501- 601- 701- 801- 901- 1001- 2ch.scのread.cgiへ]
Update time : 01/12 17:43 / Filesize : 381 KB / Number-of Response : 1047
[このスレッドの書き込みを削除する]
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧] [類似スレッド一覧]


↑キャッシュ検索、類似スレ動作を修正しました、ご迷惑をお掛けしました

分からない問題はここに書いてね452



1 名前:132人目の素数さん [2019/04/12(金) 23:52:40.62 ID:gmhbIVI0.net]
さあ、今日も1日がんばろう★☆

前スレ
分からない問題はここに書いてね451
https://rio2016.5ch.net/test/read.cgi/math/1551021871/

(使用済です: 478)

163 名前:132人目の素数さん [2019/04/19(金) 23:55:29.03 ID:FeSXtSG9.net]
HltRbqRz-00

キチガイレイパーゴキブリ松本ステロイドゴリラヒトモドキ自殺しろ

164 名前:132人目の素数さん mailto:sage [2019/04/20(土) 00:00:48.64 ID:Uf5CNksX.net]
7枚のカードがあり、それぞれの表面には1,2,3,4,5,6,7の数字が1つずつ書かれている。
カードの裏面には何も書かれておらず、裏面だけを見てこれらのカードを区別することはできない。
今これらのカードをシャッフルして、裏面を上にしてその束を机の上に積む。
この束に対し、以下の【操作】を行う。

【操作】

(1)平等なコインを投げる。

(2)表が出たら、束の上からカードを1枚引く。

(3)裏が出たら、束の上から3枚を取り、それらに書かれた数字を見る。
その3枚のカードの中に1が書かれたものが含まれるなら、それが一番上に来るようにして束に戻す。
含まれない場合、その3枚のカードを束に戻す(

165 名前:戻す際、3枚のカードが上からどのように並ぶかは任意とする)。

(4)(2)が行なわれた場合、1のカードが出たら操作を終える。それ以外のカードが出た場合、それを捨てる。
再び(1)に戻る。

(5)(3)が行なわれた場合、束の上からカードを引くことは行わない。
再び(1)に戻る。


問:
【操作】を終えるまでにコインが投げられる回数の期待値を求めよ。
[]
[ここ壊れてます]

166 名前:132人目の素数さん mailto:sage [2019/04/20(土) 00:03:25.13 ID:hDnuK9E+.net]
>>157
その本の方針に従えば

p[n+1]≦p[1]p[2]‥p[n]+1 により p[n]≦2^(2^n)。(∵帰納法)
実数 x > 2 に対し n = [ log[2]log[2] x ] とおけば2^(2^n)≦x≦2^(2^(n+1))。
さらに n > log[2]log[2] x - 1 > log log x (if x≧19)
以上によりx≧19に対し
π(x)≧π(2^(2^n))≧π(p[n])≧n> log log x。
ここで
2≦x<e^e → log log x < 1, 1≦ π(x)≧π(2)≧1
e^e≦x<e^(e^2) → log log x < 2, π(x)≧π(e^e)=6

167 名前:132人目の素数さん [2019/04/20(土) 01:03:59.27 ID:LsPEm9xl.net]
なあお前ら。
積分をちゃんと理解してるか?
実質的に定積分は1行、不定積分も1行で完結するんだぞ。


[積分の定義と導出]
定積分∫fdx(a→b)とは、
∫fdx(a→b)=Σfdx=ΣdF/dx・dx=ΣdF
=F(x1)-F(a) + F(x2)-F(x1) + ・・・ + F(b)-F(xn) =F(b)ーF(a)である。
ここでf=dF/dxであり、このFを求めることをF=∫fdxと表して不定積分という。


これがもっともシンプルだ。
これを高校の教科書では数ページにわたって記述してんだから笑える。
不定積分から教えるような不自然なことしてるからそういう滑稽なことになってるわけだ。

168 名前:132人目の素数さん [2019/04/20(土) 01:13:06.83 ID:LsPEm9xl.net]
というわけで、
高校数学の「不定積分から教えて定積分を導出する」という流れに
今まで疑問をまったく抱かなかったとしたら、そいつは本質的にアタマ悪いってことだ。

おそらく、100万人に1人も正しい積分である>>164が理解できていない。
不定積分と原始関数の違いも理解できていない。

そこのお前だよ。

169 名前:132人目の素数さん mailto:sage [2019/04/20(土) 01:23:22.76 ID:dKxu0BEK.net]
えっ?
積分定数はゲージ原理の雛形として最重要なんだが?

170 名前:132人目の素数さん mailto:sage [2019/04/20(土) 01:37:39.09 ID:wL0GKLcG.net]
>>165
あ、お前ね。
そこは分った。

171 名前:132人目の素数さん mailto:sage [2019/04/20(土) 01:48:39.96 ID:hDnuK9E+.net]
誰?



172 名前:132人目の素数さん mailto:sage [2019/04/20(土) 02:04:45.75 ID:Uf5CNksX.net]
極限
lim[x→+0] sin(x){ln(x+1)-ln(x)}
を求めよ。

173 名前:132人目の素数さん mailto:sage [2019/04/20(土) 02:15:32.51 ID:hDnuK9E+.net]
0

174 名前:132人目の素数さん mailto:sage [2019/04/20(土) 05:09:28.20 ID:kcBCauGX.net]
>>163
ありがとうございます
ですが、問題なのはprop2.4.1ではなくその下のprop2.4.2の方です……

175 名前:132人目の素数さん [2019/04/20(土) 06:47:20.85 ID:LOg2qWQT.net]
>>153
>箱の中に「同一の●が2個」ある場合の量子統計の問題

>・ケース1 「              ●●」 箱の右側で●●が観測される確は率3分の1
>・ケース2 「●●              」 箱の左側で●●が観測される確率は3分の1
>・ケース3 「●              ●」 箱の左右で●●が観測される確率は3分の1


>問2 ケース2の場合

 >a) 最初に●が箱の「左」の観測装置で観測される確率は?
 >b) 箱に残った1個の●が箱の「左」の観測装置で観測される確率は?

ケース1とケース2は対称なので
「問題1のaの解答」と「問題2のaの解答」は同じで1/2
「問題1のbの解答」と「問題2のbの解答」は同じで2/3


ここで興味深いのは
最初に「右」で●が観測された場合と
最初に「左」で●が観測され多場合とで
次の観測される●の確率が異なってくるということだ
(因果律)

最初に●が右で観測された場合
次に●が右で観測される可能性は2/3で
次に●が左で観測される可能性は1−2/3=1/3

最初に●が左で観測された場合
次に●が左で観測される可能性は2/3で
次に●が右で観測される可能性は1−2/3=1/3

この問題は量子もつれとして長い間物理学者を悩まし続けてる



  

176 名前:132人目の素数さん mailto:sage [2019/04/20(土) 08:53:30.10 ID:xhIe99Jc.net]
>>167
同意

177 名前:132人目の素数さん [2019/04/20(土) 10:32:11.17 ID:LOg2qWQT.net]
>>131

>問題
 >区別のつかない●●は
 >{x 、x}={x} と {x 、x}≠{x} のどちらの規則に従うのか?


解答)

同一の●が2個あるということで{x 、x}≠{x}の法則に従う

物理の場合は数学は単なる道具なので


178 名前:物理学者は●が{x 、x}≠{x}の法則に従うというだけで
それ以上はきにしないし

リンゴとかは「同一なら1個」で
電子は「同一の電子が2個存在する」ということが起こるが

リンゴは{x 、x}={x}という法則にしたがい
電子は{x 、x}≠{x}という法則にしたが という事で
{x 、x}={x}や{x 、x}≠{x}を物の性質に依存する物理法則として扱ってる

数学の場合は
公理的集合論の対の公理で{x 、x}={x}となっていて
これは物の性質に依存しない論理として扱われてる
[]
[ここ壊れてます]

179 名前:132人目の素数さん [2019/04/20(土) 11:09:02.36 ID:LOg2qWQT.net]
>>136
>問題
>1)は4個のケースからなり
>2)は3個のケースからなるが
>どのような論理展開で4個のケースから3個のケースになったかを説明せよ

解答
物理の説明では区別のできる
 ケース1 「●○       」 
 ケース2 「       ●○」 
 ケース3 「●       ○」 
 ケース4 「○       ●」 
から区別の出来ない
 ケース1 「●●       」 
 ケース2 「       ●●」 
 ケース3 「●       ●」 
 ケース4 「●       ●」
をつくる

ケース3の「●       ●」とケース4の「●       ●」は区別が出来ない同一のもので
「同一なら1個」という法則に従って1個のケース「●       ●」にすると
ケースは4個から1個減って3個になる

 ケース1「●●        」 箱の左側で●●が観測される確率3分の1
 ケース2「        ●●」 箱の右側で●●が観測される確率3分の1
 ケース3「●        ●」 箱の左右で●●が観測される確率3分の1


物理にとって数学は単なる道具なんで
ケースは「同一なら1個」という法則にしたがい
●は「同一のものが2個存在する」という法則に従ってる事に
別に違和感は感じない

だけど数学的な立場にたてば
公理的集合論の対の公理で{x 、x}={x}となり
これは物の性質に依存しない論理となってる

リンゴをコップに変えても{x 、x}={x}は普遍だけど
リンゴを電子に変えると{x 、x}≠{x}となる

物理学者にとっては気にもならない事だけど
数学者にとっては気になるとこだと思うのだが?


  

180 名前:132人目の素数さん [2019/04/20(土) 11:42:08.30 ID:LOg2qWQT.net]
>>175

数学では
公理は前提とされてれ
点は意味のないものとして無定義語で
点をコップにかえてもリンゴにかえても
前提となる公理系は普遍とだれる

公理的集合論の対の公理の{x 、x}={x}は前提で
集合の元の点をリンゴに換えてもコップに換えても普遍とされてる

だが物理では
リンゴは{x 、x}={x}という法則に従うが
電子は{x 、x}≠{x}という法則に従うというこtで
{x 、x}={x}や{x 、x}≠{x}を物の性質に依存する物理法則とみてる

このへんのことは
数学者にとってはどな意味があるのか?
興味がある

181 名前:132人目の素数さん mailto:sage [2019/04/20(土) 11:56:59.88 ID:Fm74+P2U.net]
それは認知科学や哲学の問題じゃね



182 名前:132人目の素数さん [2019/04/20(土) 12:10:54.69 ID:LOg2qWQT.net]
>>177それは認知科学や哲学の問題じゃね

数学では{x 、x}={x}は物の性質に依存しない公理

物理では{x 、x}={x}は物の性質に依存する物理法則

認知科学とか哲学とかよりも
単純に数学と物理の問題だと思うが

物理にとって数学は単なる道具なので
数学が{x 、x}={x}を物の性質に依存しない公理として見ている事に無関心

数学の対象は自然数の公理と集合の論理(公理的集合論)のみで
物理現象は対象外なので物理が数学をどう扱ってるか無関心

物理と数学が互いに無関心だから
お互いで整合性が取れてない状態になってる
という事だと思うが

183 名前:132人目の素数さん mailto:sage [2019/04/20(土) 12:51:33.96 ID:SO6Rpsau.net]
{x,x}={x}がりんごの場合ってのが意味わからないんですけど

りんごは2個ありますよね

184 名前:132人目の素数さん mailto:sage [2019/04/20(土) 12:53:19.39 ID:I2HBMQzQ.net]
>>178が集合論に似た独自の表記
> 物理では{x 、x}={x}は物の性質に依存する物理法則
を使って、それが集合論と合わないからと、
物理と数学のの整合性が取れない、と無関係なことを言っているようにしか見えない

185 名前:132人目の素数さん mailto:sage [2019/04/20(土) 12:57:11.58 ID:kcBCauGX.net]
つ多重集合

186 名前:132人目の素数さん mailto:sage [2019/04/20(土) 12:58:03.44 ID:I2HBMQzQ.net]
>>178
{x,x}={x}となることが物の性質に合わないというのなら、
すでに使われている{x,x}なんて表記を使わずに別の表記を使えばいいだけだろ
表記なんてただの記号列に過ぎないんだから

187 名前:132人目の素数さん [2019/04/20(土) 13:17:48.77 ID:LOg2qWQT.net]
>>179
>{x,x}={x}がりんごの場合ってのが意味わからないんですけど
>りんごは2個ありますよね

同一なら1個だけどね

たとえば
「同一人物が2人いる」というのは変で
「同一人物は1人」だと違和感がない

{人 、 人}={人}ということで
点を人に置き換えても公理は普遍

人をリンゴに置き換えても
{リンゴ 、 リンゴ }={リンゴ)で公理は普遍

人もリンゴも「同一なら1個(人)」だ

188 名前:132人目の素数さん [2019/04/20(土) 13:21:11.36 ID:HjwUVNQ4.net]
包除原理

189 名前:132人目の素数さん [2019/04/20(土) 13:27:08.31 ID:LOg2qWQT.net]
>>180
>集合論に似た独自の表記
>> 物理では{x 、x}={x}は物の性質に依存する物理法則
>を使って、それが集合論と合わないからと、
>物理と数学のの整合性が取れない、と無関係なことを言っているようにしか見えない

公理は前提となる真の命題だ

公理的集合論の対の公理で{x 、x}={x}は真の命題とされてる

これの意味は「同一なら1個」だ

集合の元は点で表現できるが
点は無定義語で意味のないものとなっている

点もリンゴもコップも意味のないものとして処理され
点をリンゴに換えてもコップにかえても{x 、x}={x}は真の命題として普遍
というのが数学の公理主義的手法だ

これにより数学は物理法則から解放され
数学は自由を得られたということになってる

だが
点をリンゴに換えても{x,x}={x}は真の命題だけど
点を電子に換えると{x,x}={x}は偽の命題になる

190 名前:132人目の素数さん [2019/04/20(土) 13:30:58.89 ID:9WmCwjsq.net]
非調和比の1次変換の次の等式を証明せよ
https://i.imgur.com/buApyBB.jpg
バーは共役(複素数)

191 名前:132人目の素数さん [2019/04/20(土) 13:31:27.28 ID:wlWLWeWG.net]
イケメンで数学に詳しいお前らに聞きたいんだけど。。。
還元率7割のギャンブルに勝つためには何割勝てば期待値がプラスになりますか?
計算方法を教えてください。。。



192 名前:132人目の素数さん mailto:sage [2019/04/20(土) 13:33:42.48 ID:GMuVJEcV.net]
還元率が1未満じゃ無理

193 名前:132人目の素数さん [2019/04/20(土) 13:40:45.10 ID:wlWLWeWG.net]
それでは、パチンコや、競馬で勝てる人はいなくなりますよ?

194 名前:132人目の素数さん [2019/04/20(土) 14:16:09.24 ID:LOg2qWQT.net]
>>182
>{x,x}={x}となることが物の性質に合わないというのなら、
>すでに使われている{x,x}なんて表記を使わずに別の表記を使えばいいだけだろ
>表記なんてただの記号列に過ぎないんだから


どんな記号にかえても
その記号が物の性質に依存してしまう事が問題だ

点をリンゴに換えても記号が普遍だけど
点を電子に換えると記号も変わる
というこが問題になると思う

ようするに物の性質に依存する法則て言うには
抽象化された論理法則ではなく
物の性質に依存する物理法則ということだ

公理的集合論の対の公理で{x 、x}={x}は
物の性質に依存しない真の命題として前提になってる

点をリンゴに置き換えても普遍だけど
点を電子に置き換えると偽の命題にあるというkとは
やはり問題がある

195 名前:132人目の素数さん mailto:sage [2019/04/20(土) 14:34:56.55 ID:I2HBMQzQ.net]
>>190
> 公理的集合論の対の公理で{x 、x}={x}は
> 物の性質に依存しない真の命題として前提になってる
集合{x,x}が集合{x}と等しいことは外延性の公理によるものであって対の公理によるものではない

これはx=電子だろうが変わらない
あなたが偽であると主張したいものが、他者との認識を共有するにあたり、
> {x 、x}
という記号列で表すのが不適切というだけの話

196 名前:132人目の素数さん [2019/04/20(土) 14:39:53.39 ID:7GfFqdSy.net]
糖質みたい

197 名前:132人目の素数さん mailto:sage [2019/04/20(土) 14:42:09.03 ID:GC22sKBz.net]
>>171
確かに本の証明だと
π(x)≧log[2] [x] log[2]‥(*)
までしか示せてないと言われてもしかたないね。
本の方針はTの冪集合を2^Tで表すとして写像g:[1,x]∩N → 2^{p|p≦x}×[1,√x]∩Nを
g(n) = {p≦x | v[p](n):odd} × √(n/Π[p≦x,v[p](n):odd] p )
で定義してこれが単射であることを利用して
[x] ≦ [√x] 2^π(x)
を示している。
これから
x ≦ (√x) 2^π(x)
が示せればいいけど、そのためにはg(n)が全射でないことをしめせばいい。
そのためには右辺の集合の元({p≦x},[√x])がg(n)の像に入らないことを示せばいい。
これがgの像にはいるとして元像をnとすると
n≦x、n=Π[p≦x]p [√x]
をみたさなければならないが
Π[p≦x]p [√x]
≧ Π[p≦x]p [√x]
≧ 2^π(x) [√x]
≧ [x]log2[√x] (∵ *)
>x
となって矛盾する。

198 名前:132人目の素数さん [2019/04/20(土) 14:49:35.39 ID:LOg2qWQT.net]
>>191
>集合{x,x}が集合{x}と等しいことは外延性の公理によるものであって対の公理によるものではない
>これはx=電子だろうが変わらない
>あなたが偽であると主張

電子の場合は
同一な2個の電子が存在するので
{x 、x}≠{x}になる

ということで
{電子 、 電子}={電子}
は偽の命題となる

199 名前:132人目の素数さん mailto:sage [2019/04/20(土) 14:52:54.74 ID:I2HBMQzQ.net]
>>194
> あなたが偽であると主張したいものが、他者との認識を共有するにあたり、
> {電子 、 電子}={電子}
> という記号列で表すのが不適切というだけの話

200 名前:132人目の素数さん [2019/04/20(土) 14:59:18.14 ID:LOg2qWQT.net]
>>191


物理の説明では区別のできる ●○の場合は
 ケース1 「●○       」 
 ケース2 「       ●○」 
 ケース3 「●       ○」 
 ケース4 「○       ●」 
となるが○を●に置き換えて区別できないとしたとき
 ケース1 「●●       」 
 ケース2 「       ●●」 
 ケース3 「●       ●」 
 ケース4 「●       ●」
となる

ケース3とけーす4は同一で区別できないとし
「同一なら1個 」ということで
2個のケースを1個のケースにする

この時に
{x 、x}={x}という公理を使用してる

ケースの場合は
「同一なら1個」で
●の場合は
「同一な●が2個存在する」で
同一な物が2個存在できるかどーかは普遍的な倫理ではなく
物の性質として物理では扱っている

数学の場合は{x 、 x}={x}は真の命題として前提になってるので
「同一なら1個」が真の命題になり
「同一な●が2個ある」は偽の命題になってる

201 名前:132人目の素数さん [2019/04/20(土) 15:03:06.49 ID:LOg2qWQT.net]
>>195
> あなたが偽であると主張したいものが、他者との認識を共有するにあたり、
> {電子 、 電子}={電子}
> という記号列で表すのが不適切というだけの話

リンゴの場合は
{リンゴ 、 りんご}={りんご} は適切で
電子の場合は
  {電子 、 電子}={電子}は不適切

これは{x 、x}={x}という命題が
真の場合もあるし偽の場合もあるし
物の性質に依存する物理の法則ということを示してる



202 名前:132人目の素数さん [2019/04/20(土) 16:41:20.86 ID:LsPEm9xl.net]
実質的に定積分1行、不定積分1行で完結する。


[積分の定義と導出]
定積分∫fdx(a→b)とは、
∫fdx(a→b)=Σfdx=ΣdF/dx・dx=ΣdF
=F(x1)-F(a) + F(x2)-F(x1) + ・・・ + F(b)-F(xn) =F(b)ーF(a)である。
ここでf=dF/dxであり、このFを求めることをF=∫fdxと表して不定積分という。


これがもっともシンプルだな。
これを高校の教科書では数ページにわたって記述してんだから笑える。
不定積分から教えるような不自然なことしてるからそういう滑稽なことになってるわけだ。

203 名前:132人目の素数さん [2019/04/20(土) 16:42:17.43 ID:LsPEm9xl.net]
なぜ、関数の面積が定積分のF(b)ーF(a)となるのか。
数学教師でも上のようにすっと説明できるヤツがほとんどおらん。
そりゃ、不定積分から定積分を導出するような無理筋やってたらF(b)ーF(a)となる意味が
分かるわけないからな。

204 名前:132人目の素数さん [2019/04/20(土) 16:43:03.91 ID:LsPEm9xl.net]
微分は直感で理解できよう。
定積分のF(b)ーF(a)が直感で理解できないのは、教育の仕方が完全に間違っているからである。

積分を理解したつもりでいたそこのお前、
実はまったく理解できていなかったことに気づいたか?

くっくっく

205 名前:132人目の素数さん [2019/04/20(土) 16:48:09.63 ID:LsPEm9xl.net]
今そこのお前。
お前だよ。

積分をまったく理解していなかったお前。
偉そうに公理やら命題やらほざいてんじゃねえぞゴミカスが。

くっくっく

206 名前:132人目の素数さん [2019/04/20(土) 16:57:34.53 ID:LsPEm9xl.net]
というわけで、
高校数学の「まず不定積分があり、そこから定積分を導出する」というとんでもないデタラメを
物理学史上正しい「積分とは定積分のことであり、不定積分はその付属物にすぎない」という
教え方にとっとと直せ。

アホの落ちこぼれしかいない数学屋から
微分積分を取り上げて、元の物理学の一部門に戻せってーの。

微分積分は数学ではない。
物理学の一部門なんだよバーーーーーカ

くっくっく

207 名前:132人目の素数さん [2019/04/20(土) 17:36:58.13 ID:LsPEm9xl.net]
ここの連中は
役に立たん数学バカのくせに
こういうことも知らん。

[原始関数と不定積分の関係]
原始関数があり、定積分において原始関数を求めることを特に不定積分という。
よって不定積分は原始関数の一部であり、特別な呼称にすぎない。

微分の逆演算はあくまで原始関数を求めることだ。
それが定積分に関係する場合は特に不定積分と言っておるだけだ。

つまり、ここのアホどもは
「原始関数」と 「不定積分」がまったく同じものと思っておるサルばっかと
いうことだ。

くっくっく

208 名前:132人目の素数さん [2019/04/20(土) 17:49:13.94 ID:LsPEm9xl.net]
というわけで、高校数学はまったくデタラメな積分教育をしており、
次のように書き直すべきである。

[積分の定義と導出]
定積分∫fdx(a→b)とは、
∫fdx(a→b)=Σfdx=ΣdF/dx・dx=ΣdF
=F(x1)-F(a) + F(x2)-F(x1) + ・・・ + F(b)-F(xn) =F(b)ーF(a)である。
ここでf=dF/dxであり、このFを求めることをF=∫fdxと表して不定積分という。

・積分とは定積分であって、不定積分は付属物にすぎない。
・原始関数と不定積分の関係をはっきりと教える。

いかにアホを量産しておるか、このスレを見れば一目瞭然だわ。
くっくっく

209 名前:132人目の素数さん [2019/04/20(土) 18:00:02.74 ID:ImZYbFoP.net]
G. ストラング著『線形代数とその応用』を読んでいます。

A * x = b の解の数がそれぞれつぎのような行列 A を求めよ。

(ii) b により、 1 または ∞。


そんな A はないですよね?

210 名前:132人目の素数さん mailto:sage [2019/04/20(土) 18:04:03.46 ID:kcBCauGX.net]
>>193
ありがとうございます!
ちょっと今酔っててなにも考えられないので、明日確認してみます

211 名前:132人目の素数さん [2019/04/20(土) 18:13:31.69 ID:ImZYbFoP.net]
>>205

この問題って出題ミスか、訳者のミスですよね?



212 名前:132人目の素数さん [2019/04/20(土) 18:16:01.30 ID:LsPEm9xl.net]
不定積分で得意げにF=∫fdx+Cと書くアホばっかだよな。
このCはいらんのだ。記号∫fdxに含まれてんだよ。

Cが必要になるのは、∫fdx=∫gdx+Cというように
あえて定数だけ違う2つを並べる場合だけなんだが、
実学ではこんな場面には遭遇せんわな

213 名前:

ホントにアタマ悪いなお前らは。
くっくっく
[]
[ここ壊れてます]

214 名前:132人目の素数さん [2019/04/20(土) 18:19:21.83 ID:RgD4Zlbd.net]
>>208
お前も相当頭悪いぞ

215 名前:132人目の素数さん mailto:sage [2019/04/20(土) 18:27:04.34 ID:VxeRH3wI.net]
idの出ない物理板からわざわざ逃げ出すのは珍しいパターンですね、くっくっくさん

216 名前:132人目の素数さん mailto:sage [2019/04/20(土) 20:00:32.27 ID:X+qYV/yQ.net]
知りたいことの、説明ができないのフローを書きました。

以下のフローをものすごい数(無限回でしょうか?)、回した場合、
total回転数カウンタ ÷ 大当たりカウンタがいくつになるのかを
平均値、中央値それぞれ、計算式で求める方法を知りたく思います。

よろしくお願いいたします。

※単純に言うと、パチンコの確率変動中の平均回転数を求める方法を知りたいのです。

 数学板にパチンコする人がいないと思うのですが、実際は
 一種二種混合機の、平均回転数を知りたいのです。

よろしくお願いいたします。


https://files-uploader.xzy.pw/upload/20190420194637_4e4f646550.png

217 名前:132人目の素数さん mailto:sage [2019/04/20(土) 20:46:39.77 ID:Uf5CNksX.net]
複素数α,β,γが、
|α|=1, |α-β|=1, |βγ|=1を満たして変化するとき、
|α+β+γ|の最大値を求めよ。

218 名前:132人目の素数さん [2019/04/20(土) 23:50:28.22 ID:Adp1EhHm.net]
n,mを自然数として、n以下の素数の個数をπ(n)として、
n/π(n)=mが解を持つとき、n/π(n)=m-1は解を持ちますか?
また、その解は求まりますか?

219 名前:132人目の素数さん mailto:sage [2019/04/21(日) 00:06:41.11 ID:9Rhfeojo.net]
>>212
 β→0, |γ|→∞ のとき、限りなく大きくなる。

220 名前:132人目の素数さん mailto:sage [2019/04/21(日) 01:44:21.76 ID:veI2FMxr.net]
可縮でないが特異ホモロジーが1点の特異ホモロジーと同型になる位相空間ってありますか?

221 名前:132人目の素数さん mailto:sage [2019/04/21(日) 01:48:31.25 ID:ET8VwjE0.net]
>>215
Poincare3球面から1点抜けばいいんじゃね?



222 名前:132人目の素数さん [2019/04/21(日) 01:58:12.55 ID:niww+ci3.net]
>>214

|βγ|=(4 |γ|^2 co(Arg[α-β] )==1

だから|γ|と α、β、γの存在可能性をいわないとすっきりしないね

223 名前:132人目の素数さん mailto:sage [2019/04/21(日) 02:14:45.89 ID:9TTfd+fa.net]
>>216
ありがとうございます
もう少し簡単な例はないでしょうか?

224 名前:イナ mailto:sage [2019/04/21(日) 04:31:44.16 ID:PA2ny4G6.net]
>>143>>152あってんのかな? 違うなら考えなおすよ。

225 名前:132人目の素数さん mailto:sage [2019/04/21(日) 08:53:23.06 ID:DY2tH8OT.net]
>>219
違う。
そもそも問題になってないけど。

226 名前:132人目の素数さん mailto:sage [2019/04/21(日) 08:53:28.89 ID:rN3o4OP9.net]
>>208
すげー馬鹿だなw

227 名前:132人目の素数さん mailto:sage [2019/04/21(日) 08:56:57.40 ID:rN3o4OP9.net]
>>208
1/xの不定積分でCがいらないなら
∫1/x dx=log|x|
∫1/x dx=log|2x|
よってlog|x|=log|2x|

こうなるぞw

くっくっくはlog|x|=log|2x|という式を認めちゃうんだなw

くっくっくって物理板で付けてる回答見てる限りそうは頭悪くないと思ってたけど
やっぱ相当なガイジだったんだなw

228 名前:132人目の素数さん [2019/04/21(日) 09:38:41.10 ID:JdKcD9SO.net]
>>139

>箱の中に「同一の●が2個」ある場合の量子統計の問題
>・ケース1 「              ●●」 箱の右側で●●が観測される確は率3分の1
>・ケース2 「●●              」 箱の左側で●●が観測される確率は3分の1
>・ケース3 「●              ●」 箱の左右で●●が観測される確率は3分の1
>問3 ケース3の場合
 >a1) 最初に●が箱の「右」の観測装置で観測される確率は?
 >b1) 箱に残った1個の●が箱の「左」の観測装置で観測される確率は?
 >a2) 最初に●が箱の「左」の観測装置で観測される確率は?
 >b2) 箱に残った1個の●が箱の「右」の観測装置で観測される確率は?


問題3の解答

a1(最初に右で●が観測される確率)と
a2

229 名前:i最初に左で●が観測される確率)は左右対称なので
共に等しく1/2

a1 = 1/2
a2 = 1/2

(最初右 × 次左) + (最初左 ×次右)=左右で●●が観測される

(1/2  × ? )  + (1/2 × ?) =1/3
(左右は対象なので次左と次右の確率は等しい)

?=1/3

b1=1/3
b2=1/3
[]
[ここ壊れてます]

230 名前:132人目の素数さん [2019/04/21(日) 09:51:35.93 ID:JdKcD9SO.net]
>>223


最初に●が右で観測された場合は
次が右で観測される確率は[2/3]で
次が左で観測される確率は[1/3]になる

最初に●が左で観測された場合は
次が右で観測される確率は[1/3]で
次が左で観測される確率は[2/3]になる


箱の中に1個の●が残された状態のときに
右で●が観測される可能性が1/3の場合と2/3の場合は有るということになる

231 名前:132人目の素数さん [2019/04/21(日) 10:05:54.05 ID:dn06luVA.net]
dy/dt = f(t) * g(y)

y(a) = 0 となる点 a が存在すると仮定すると、 y(t) ≡ 0 であるそうですが、どうやって証明するのでしょうか?



232 名前:132人目の素数さん [2019/04/21(日) 10:28:01.80 ID:JdKcD9SO.net]
>>224

最初に●が箱の右で観測されると瞬時に箱全体で
残った●は
右で2/3の確率で
左で1/3の確率で観測されるようになる

最初に●が箱の左で観測されると瞬時に箱全体で
残った●は
右で1/3の確率で
左で2/3の確率で観測されるようになる

233 名前:132人目の素数さん [2019/04/21(日) 10:33:35.18 ID:JdKcD9SO.net]
問題
「同一の2個の●」は自然数と単射が可能か?

234 名前:132人目の素数さん [2019/04/21(日) 10:49:56.76 ID:JdKcD9SO.net]
高木貞二の「数の概念」の中で

「ペアノが自然数の公理を作るときに採用した後者(successer)の概念は
「・・・次」という意味で次々n繰り返すことだから基礎にしてるのは個数ではなく「時」の感覚と思われる」

としてる


問題

回数と個数は数として同じ概念と言えるのか?
(個数は自然数の体系なのか?)

235 名前:132人目の素数さん mailto:sage [2019/04/21(日) 13:19:04.18 ID:CMK2oqLo.net]
数えずに個数が分かるんか?

236 名前:132人目の素数さん mailto:sage [2019/04/21(日) 14:22:46.85 ID:O3MGBDn5.net]
タタタタタ タタタター タタタタッ タタタータ タタタッタ タタータタ タタッタタ タータタタ タッタタタ ッタタタタ
タタターー タタターッ タタタッッ タターター タタータッ タタッター タタッタッ タターータ タターッタ タタッッタ
タータター タータタッ タッタター タッタタッ タータータ タータッタ タッタータ タッタッタ ターータタ ターッタタ
タッッタタ ッタタター ッタタタッ ッタタータ ッタタッタ ッタータタ ッタッタタ ッッタタタ タターーー タターーッ
タターッッ タタッッッ ターターー ターターッ タータッッ タッターー タッターッ タッタッッ ターーター ターータッ
ターッター ターッタッ タッッター タッッタッ ターーータ ターーッタ ターッッタ タッッッタ ッタターー ッタターッ
ッタタッッ ッターター ッタータッ ッタッター ッタッタッ ッターータ ッターッタ ッタッッタ ッッタター ッッタタッ
ッッタータ ッッタッタ ッッッタタ ターーーー ターーーッ ターーッッ ターッッッ タッッッッ ッターーー ッターーッ
ッターッッ ッタッッッ ッッターー ッッターッ ッッタッッ ッッッター ッッッタッ ッッッッタ ッッッッッ
                                                                  

237 名前:132人目の素数さん mailto:sage [2019/04/21(日) 14:28:30.29 ID:9Rhfeojo.net]
>>214

|α+β|^2 + |α-β|^2 - 2|α|^2 = (α+β)(α~+β~) + (α-β)(α~-β~) - 2αα~
 = 2ββ~ = 2|β|^2 ≧ 0,
 |α+β| = |2α - (α-β)| ≦ 2|α| + |α-β|,
題意より |α| = |α-β| = 1 ゆえ
 1 ≦ |α+β| ≦ 3,
このとき
 |α+β+γ| ≧ |γ| - |α+β| ≧ 1/|β| - 3,


 α = 1, β = 1 - e^(iθ) (θ>0 は実数)とおくと
 |β| = 2|sin(θ/2)| < θ,
 |γ| = 1/|β| > 1/θ,
 |α+β+γ| ≧ |γ| - |α+β| > 1/θ - 3,

>>228
貞治(王監督と同名)

238 名前:132人目の素数さん mailto:sage [2019/04/21(日) 18:06:42.40 ID:UbrFnWwc.net]
>>211
高校数学までで求めてみた

大当り確率(高確率):1/10
確変継続回転数:20回とする

・平均値
確変終了までを含めた回転数と
初当りを除く大当り回数の比の期待値は
R_1=(10−(10+20)(9/10)^(2×20))/(1−(9/10)^20)
≒10.88[回転/大当り]

・中央値
継続を引けなかった場合を含む試行

239 名前:
上位50%が大当りを引く回転数は
R_2=log(9/10)/log(1/2) ※端数切り上げ
=7[回転目]

パチンカーの方いましたら補足よろ
[]
[ここ壊れてます]

240 名前:132人目の素数さん [2019/04/21(日) 18:11:02.33 ID:JdKcD9SO.net]
>>229

同一の2個の●の場合

自然数の1に対応する●とか
自然数の2に対応する●とか
区別はつけれない

241 名前:132人目の素数さん mailto:sage [2019/04/21(日) 19:52:05.73 ID:UzBPYKu8.net]
0.89%の10%減、1.34%の10%減ってそれぞれ何になりますか?



242 名前:132人目の素数さん [2019/04/21(日) 20:45:46.18 ID:jmIEUekc.net]
https://ja.m.wikipedia.org/wiki/%E4%B8%8D%E5%AE%9A%E7%A9%8D%E5%88%86
>関数の不定積分という用語には次に挙げる四種類の意味で用いられる場合がある。

デタラメすぎんだよ無能な数学屋ども。
微分積分は物理学の一部門なんだから、お前らアホどもは
勝手に種類を増やすなアホ。

×(逆微分) 0) ただの原始関数であって不定積分ではない。
〇(積分論) 1) これが不定積分だが表現が不自然。
×(積分論) 2) 片端が変数なだけの定積分であって不定積分ではない。完全な間違い。どアホ。
△(積分論) 3)  そう呼ぶと定義すればそれでもよいが、そもそもルベーグのは積分モドキにすぎない。

あのなあ、
数学屋はこの世にいらんと思うぞ。
お前らのは積分ではなくて積分モドキの積分ごっこなんだよ。

落ちこぼれのクズどもが。
お前だよお前。
そこのお前だサルが

くっくっく

243 名前:132人目の素数さん [2019/04/21(日) 20:46:42.98 ID:jmIEUekc.net]
>関数の不定積分という用語には次に挙げる四種類の意味で用いられる場合がある。

それ大間違いだからな。
「定積分に関して原始関数(を求めること)を 特に不定積分と呼ぶ。」
この意味しかない。
つまり、不定積分という呼称は不要なんだよアホ。

くっくっく

244 名前:132人目の素数さん [2019/04/21(日) 20:48:19.50 ID:jmIEUekc.net]
積分とは何か?
と聞かれれば、たったこれだけで答えることができる。
お前らクズの数学バカは、アタマに叩き込んどけサルどもが。

[積分の定義と導出]
定積分∫fdx(a→b)とは、
∫fdx(a→b)=Σfdx=ΣdF/dx・dx=ΣdF
=F(x1)-F(a) + F(x2)-F(x1) + ・・・ + F(b)-F(xn) =F(b)ーF(a)である。
ここでf=dF/dxであり、このFを求めることをF=∫fdxと表して不定積分という。

くっくっく

245 名前:132人目の素数さん mailto:sage [2019/04/21(日) 20:56:33.67 ID:+WWR/+ZG.net]
さすがアホのくっくっく
積分は何らかの導関数として書かれる関数にしか定義されない(笑)とか頭沸いとりますな

246 名前:132人目の素数さん [2019/04/21(日) 20:59:14.33 ID:jmIEUekc.net]
>>222
おいメクラ。これ読めんのかメクラ。
「不定積分で得意げにF=∫fdx+Cと書くアホばっかだよな。
このCはいらんのだ。記号∫fdxに含まれてんだよ。」

含まれてんだから
お前のその式の右辺にCを足しとけよ。

記号∫fdxから関数に変わるときには
Cを足すのに決まってんだろ。

記号であるときには∫fdxにCが含まれてるから
記号∫fdx+Cなんて書くのは大間違いなんだよバーーーーカ

くっくっく

247 名前:132人目の素数さん [2019/04/21(日) 21:06:02.40 ID:jmIEUekc.net]
おいサル。

>積分は何らかの導関数として書かれる関数にしか定義されない(笑)とか頭沸いとりますな

定義はここまでだぞサル。
∫fdx(a→b)=Σfdx
あとは導出だぞサル。

お前らは基本がまるで出来ていないサルだ。
くっくっく

248 名前:132人目の素数さん mailto:sage [2019/04/21(日) 21:09:37.88 ID:DY2tH8OT.net]
この人数学科ではないよね?
理系は理系なん?

249 名前:132人目の素数さん [2019/04/21(日) 21:11:42.41 ID:jmIEUekc.net]
>>222
おいメクラ。
∫1/x dxは記号だぞメクラ。

この記号を実際の関数に変えるならlogx+Cというように
Cを足すのに決まってんだろ。

お前は不定積分の記号と
その関数を区別出来てないんだよ未熟なメクラザルが。

くっくっく

250 名前:132人目の素数さん [2019/04/21(日) 21:15:00.37 ID:jmIEUekc.net]
>>241
お前らカスの数学を包括する物理系だが
それがどうした?

初めて本当の積分に触れて感動したか。
お前らの積分はいかにニセモノか
少しは気付けたらいいな。

くっくっく

251 名前:132人目の素数さん mailto:sage [2019/04/21(日) 21:16:54.49 ID:rN3o4OP9.net]
F=∫fdx だっておwwwwwwwwwwwwwwwwwww



252 名前:132人目の素数さん mailto:sage [2019/04/21(日) 21:19:39.59 ID:+WWR/+ZG.net]
>>240
ふーん、あっそ
ならΣfdxのdxって何?

253 名前:132人目の素数さん mailto:sage [2019/04/21(日) 21:29:20.38 ID:Ln3WaNNT.net]
>>233
区別できないの定義は何?
ある時刻の2電子e0a、e0bと
別の時刻の2電子e1a、e1bとの対応が決定出来ないということじゃないのか?

決定出来ないだけだから、写像を作りたいだけなら勝手に

254 名前:ゥ然数と対応付ければいいだけ []
[ここ壊れてます]

255 名前:132人目の素数さん mailto:sage [2019/04/21(日) 21:45:06.23 ID:0+pmN6N5.net]
超準解析ではΣdxに意味がありますね

256 名前:132人目の素数さん mailto:sage [2019/04/21(日) 22:04:59.37 ID:laPPS+cy.net]
Lebesgue 積分はおろか Riemann 積分もわかってないやろ?
微分形式もあかん。
教養課程レベルの解析があかんのに超準解析もへったくれもないやろ?

257 名前:132人目の素数さん mailto:sage [2019/04/21(日) 22:38:58.90 ID:2njiH/EK.net]
ゲージ原理の雛形理解できないクック猿さんなんで発狂しとるの?

258 名前:132人目の素数さん mailto:sage [2019/04/21(日) 23:02:58.57 ID:C0dus1o9.net]
(1)複素平面において、点A(α)が点O(0)を中心とする半径1の円上を動くとき、点P(1/α^2)が動いてできる曲線Cで囲まれた領域の面積を求めよ。

(2)さらに、C上を点B(β)が動くとき、点Q(1/β^2)が動いてできる曲線で囲まれた領域の面積を求めよ。

259 名前:132人目の素数さん mailto:sage [2019/04/21(日) 23:22:16.00 ID:62fOS71t.net]
『1個のサイコロを10回投げたとき,1または2の目が
ちょうど4回出る確率を求めよ』

260 名前:132人目の素数さん mailto:sage [2019/04/22(月) 00:52:22.92 ID:/9cH5Aw+.net]
Xからℝ(またはℂ)への連続写像全体のなす環が整数全体のなす環と同型になるようなハウスドルフ空間Xは存在しますか?

261 名前:132人目の素数さん mailto:sage [2019/04/22(月) 01:02:36.68 ID:1klKHCpt.net]
連続関数として定数関数考えただけでも濃度的に同型になるわけないと思います



262 名前:132人目の素数さん mailto:sage [2019/04/22(月) 02:18:02.01 ID:Kh0e2iq0.net]
>>231
|α+β| = |2α - (α-β)| ≧ 2|α| - |α-β| = 1,
使わないけど・・・・

263 名前:132人目の素数さん mailto:sage [2019/04/22(月) 03:01:40.24 ID:/9cH5Aw+.net]
>>253
確かにそうですね
ありがとうございます






[ 続きを読む ] / [ 携帯版 ]

前100 次100 最新50 [ このスレをブックマーク! 携帯に送る ] 2chのread.cgiへ
[+板 最近立ったスレ&熱いスレ一覧 : +板 最近立ったスレ/記者別一覧](;´∀`)<381KB

read.cgi ver5.27 [feat.BBS2 +1.6] / e.0.2 (02/09/03) / eucaly.net products.
担当:undef