- 941 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/04/22(月) 07:34:15.29 ID:jGWanb5w.net]
- >>849
つづき 積分値が無限大に発散してしまいます。これは、全事象の確率は1であるというコルモゴロフの確率の公理に反しています。 よって、厳密には、非正則な分布は確率密度関数ではありません。なぜなら、確率の公理を満たしていないからです。それでもこの分布が使われる理由は、この分布には特有の特徴があり、それが事前分布として機能する上でとても有用だからです。 (引用終り) 過去、私が確率論の専門家さんと呼ぶ人が、時枝記事での”確率空間(Ω,F,P)”で、関数Pの可測性を問題視した(下記) この可測性は、ビタリ類似の意味ではなく、非正則同様に、関数Pが上記1〜3を満たすことができないという意味だろうよ スレ 20 wc2014.2ch.net/test/read.cgi/math/1466279209/528-529 (512 2016/07/03 確率論の専門家さん来訪 ID:f9oaWn8A と ID:1JE/S25W ) 528 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:03:57.29 ID:f9oaWn8A [8/13] おれが問題視してるのはの可測性 正確にかくために確率空間(Ω,F,P)を設定しよう Y,Zはそれぞれ(Ω,F)から(R,B(R))の可測関数である. もしhが(R,B(R))から(N,2^N)への可測関数ならば h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど hが(R,B(R))から(N,2^N)への可測関数とは正直思えない 529 名前:132人目の素数さん[] 投稿日:2016/07/03(日) 23:04:46.18 ID:f9oaWn8A [9/13] >>528 自己レス (R,B(R))ではなくすべて(R^N,B(R^N))だな (引用終り) 以上
|

|