- 92 名前:現代数学の系譜 雑談 古典ガロア理論も読む [2019/04/01(月) 17:51:49.18 ID:8klxyqsn.net]
- >>82
つづき https://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%AD%E3%82%B9%E7%A9%8D クロス積 (抜粋) ベクトル積(英語: vector product)とは、ベクトル解析において、3次元の向き付けられた内積空間において定義される、2つのベクトルから新たなベクトルを与える二項演算である。2つのベクトル a、b のベクトル積は a×b や [a,b] で表される。演算の記号からクロス積(cross product)と呼ばれることもある。 2つのベクトルからスカラーを与える二項演算である内積に対して外積(がいせき)とも呼ばれるが、英語でouter productは直積を意味するので注意を要する。ベクトル積を拡張した外積代数があり、ベクトル積はその3次元における特殊な場合である。 外積は2階の反対称テンソルであり、これはホッジ作用素により、n 次元では n - 2 階の擬テンソルに写像できる。つまり、2次元では擬スカラー(0階の擬テンソル)、3次元では擬ベクトル(1階の擬テンソル)に写像できるが、4次元以上ではテンソルとして扱うしかない。 外積(ドイツ語でauseres Produkt)は、グラスマンによって導入されたが、当時はそれほど注目されず、彼の死後に高く評価された。 https://ja.wikipedia.org/wiki/%E5%A4%96%E7%A9%8D%E4%BB%A3%E6%95%B0 外積代数 数学におけるベクトルの外積(がいせき、英語: exterior product)あるいは楔積(くさびせき、ウェッジ積、英語: wedge product)はクロス積をある特定の性質に着目して、より高次元の場合へ一般化する代数的な構成である。クロス積やスカラー三重積のようにベクトル同士の外積はユークリッド幾何学において面積や体積およびそれらの高次元における類似物の研究に用いられる。 外積代数(がいせきだいすう、英語: exterior algebra)は、ヘルマン・グラスマンに因んでグラスマン代数(グラスマンだいすう、英語: Grassmann algebra)[1]としても知られ、与えられた体 K 上のベクトル空間 V 上の外積によって生成される多元環である。多重線型代数やその関連分野と同様に、微分形式の成す多元環を通じて現代幾何学、特に微分幾何学と代数幾何学において広く用いられる。 つづく
|

|