>>376 ”定理1.7 (422 に書いた定理) f : R → R とする. Bf :={x ∈ R | lim sup y→x |(f(y) − f(x))/(y − x)|< +∞ }
これ、おっさん>>362引用の下記書籍にある、”the Dini derivates”(ディニ微分)やね おれも、勉強不足だね。知らなかったな・・(^^
で、おっさん重箱の隅だが、拡張実数をいうなら 下記の本のように、”Let B ⊂ R, f : B →R ̄”(注:R ̄は、拡張実数でRの上付きバーの簡易表現)としとくべきだぜ
https://www.amazon.co.jp/Fundamentals-Analysis-Universitext-Sterling-Berberian/dp/0387984801 Fundamentals of Real Analysis (Universitext) (英語) ペーパーバック ? 2008/6/13 Sterling K. Berberian (著) 出版社: Springer; Softcover reprint of the original 1st ed. 1999版 (1998/11/1) https://books.google.co.jp/books?id=MzQ6JA6SiHYC&pg=PA215&lpg=PA215&dq=%22liminf+of+functions%22 Fundamentals of Real Analysis 著者: Sterling K. Berberian
(抜粋)(アスキー表現の文字化けがあるので、元リンクご参照)(検索すると、無料PDFのサイトがあったが、怪しそうだったので、アクセスせず(^^; ) (P220) 5.3.6. Theorem. Let B ⊂ R, f : B →R ̄, c ∈ R, and suppose that B⊃(c - r,c)∪(c,c +r) for some r >O. In order that (注:R ̄は、拡張実数でRの上付きバーの簡易表現) lim x→c, x≠c f(x)
exist (in the sense of 3.5.5), it is necessary and sufficient that the four numbers,
lim sup x→c+ f(x), lim inf x→c+ f(x),
lim sup x→c- f(x), lim inf x→c- f(x),
be equal, in which case all five number are equal.
5.3.7. Definition. Let g: [a ,b] → R, a < b, and let c ∈ [a ,b] . Write B = [a, b] - {c} and define f: B →R ̄ by the formula